efl/legacy/embryo/src/bin/embryo_cc_sc3.c

2064 lines
74 KiB
C
Raw Normal View History

/* Small compiler - Recursive descend expresion parser
*
* Copyright (c) ITB CompuPhase, 1997-2003
*
* This software is provided "as-is", without any express or implied warranty.
* In no event will the authors be held liable for any damages arising from
* the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software in
* a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*
* Version: $Id$
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h> /* for _MAX_PATH */
#include <string.h>
#if defined FORTIFY
#include "fortify.h"
#endif
#include "embryo_cc_sc.h"
static int skim(int *opstr,void (*testfunc)(int),int dropval,int endval,
int (*hier)(value*),value *lval);
static void dropout(int lvalue,void (*testfunc)(int val),int exit1,value *lval);
static int plnge(int *opstr,int opoff,int (*hier)(value *lval),value *lval,
char *forcetag,int chkbitwise);
static int plnge1(int (*hier)(value *lval),value *lval);
static void plnge2(void (*oper)(void),
int (*hier)(value *lval),
value *lval1,value *lval2);
static cell calc(cell left,void (*oper)(),cell right,char *boolresult);
static int hier13(value *lval);
static int hier12(value *lval);
static int hier11(value *lval);
static int hier10(value *lval);
static int hier9(value *lval);
static int hier8(value *lval);
static int hier7(value *lval);
static int hier6(value *lval);
static int hier5(value *lval);
static int hier4(value *lval);
static int hier3(value *lval);
static int hier2(value *lval);
static int hier1(value *lval1);
static int primary(value *lval);
static void clear_value(value *lval);
static void callfunction(symbol *sym);
static int dbltest(void (*oper)(),value *lval1,value *lval2);
static int commutative(void (*oper)());
static int constant(value *lval);
static char lastsymbol[sNAMEMAX+1]; /* name of last function/variable */
static int bitwise_opercount; /* count of bitwise operators in an expression */
/* Function addresses of binary operators for signed operations */
static void (*op1[17])(void) = {
os_mult,os_div,os_mod, /* hier3, index 0 */
ob_add,ob_sub, /* hier4, index 3 */
ob_sal,os_sar,ou_sar, /* hier5, index 5 */
ob_and, /* hier6, index 8 */
ob_xor, /* hier7, index 9 */
ob_or, /* hier8, index 10 */
os_le,os_ge,os_lt,os_gt, /* hier9, index 11 */
ob_eq,ob_ne, /* hier10, index 15 */
};
/* These two functions are defined because the functions inc() and dec() in
* SC4.C have a different prototype than the other code generation functions.
* The arrays for user-defined functions use the function pointers for
* identifying what kind of operation is requested; these functions must all
* have the same prototype. As inc() and dec() are special cases already, it
* is simplest to add two "do-nothing" functions.
*/
static void user_inc(void) {}
static void user_dec(void) {}
/*
* Searches for a binary operator a list of operators. The list is stored in
* the array "list". The last entry in the list should be set to 0.
*
* The index of an operator in "list" (if found) is returned in "opidx". If
* no operator is found, nextop() returns 0.
*/
static int nextop(int *opidx,int *list)
{
*opidx=0;
while (*list){
if (matchtoken(*list)){
return TRUE; /* found! */
} else {
list+=1;
*opidx+=1;
} /* if */
} /* while */
return FALSE; /* entire list scanned, nothing found */
}
SC_FUNC int check_userop(void (*oper)(void),int tag1,int tag2,int numparam,
value *lval,int *resulttag)
{
static char *binoperstr[] = { "*", "/", "%", "+", "-", "", "", "",
"", "", "", "<=", ">=", "<", ">", "==", "!=" };
static int binoper_savepri[] = { FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE,
TRUE, TRUE, TRUE, TRUE, FALSE, FALSE };
static char *unoperstr[] = { "!", "-", "++", "--" };
static void (*unopers[])(void) = { lneg, neg, user_inc, user_dec };
char opername[4] = "", symbolname[sNAMEMAX+1];
int i,swapparams,savepri,savealt;
int paramspassed;
symbol *sym;
/* since user-defined operators on untagged operands are forbidden, we have
* a quick exit.
*/
assert(numparam==1 || numparam==2);
if (tag1==0 && (numparam==1 || tag2==0))
return FALSE;
savepri=savealt=FALSE;
/* find the name with the operator */
if (numparam==2) {
if (oper==NULL) {
/* assignment operator: a special case */
strcpy(opername,"=");
if (lval!=NULL && (lval->ident==iARRAYCELL || lval->ident==iARRAYCHAR))
savealt=TRUE;
} else {
assert( (sizeof binoperstr / sizeof binoperstr[0]) == (sizeof op1 / sizeof op1[0]) );
for (i=0; i<sizeof op1 / sizeof op1[0]; i++) {
if (oper==op1[i]) {
strcpy(opername,binoperstr[i]);
savepri=binoper_savepri[i];
break;
} /* if */
} /* for */
} /* if */
} else {
assert(oper!=NULL);
assert(numparam==1);
/* try a select group of unary operators */
assert( (sizeof unoperstr / sizeof unoperstr[0]) == (sizeof unopers / sizeof unopers[0]) );
if (opername[0]=='\0') {
for (i=0; i<sizeof unopers / sizeof unopers[0]; i++) {
if (oper==unopers[i]) {
strcpy(opername,unoperstr[i]);
break;
} /* if */
} /* for */
} /* if */
} /* if */
/* if not found, quit */
if (opername[0]=='\0')
return FALSE;
/* create a symbol name from the tags and the operator name */
assert(numparam==1 || numparam==2);
operator_symname(symbolname,opername,tag1,tag2,numparam,tag2);
swapparams=FALSE;
sym=findglb(symbolname);
if (sym==NULL /*|| (sym->usage & uDEFINE)==0*/) { /* ??? should not check uDEFINE; first pass clears these bits */
/* check for commutative operators */
if (tag1==tag2 || oper==NULL || !commutative(oper))
return FALSE; /* not commutative, cannot swap operands */
/* if arrived here, the operator is commutative and the tags are different,
* swap tags and try again
*/
assert(numparam==2); /* commutative operator must be a binary operator */
operator_symname(symbolname,opername,tag2,tag1,numparam,tag1);
swapparams=TRUE;
sym=findglb(symbolname);
if (sym==NULL /*|| (sym->usage & uDEFINE)==0*/)
return FALSE;
} /* if */
/* check existance and the proper declaration of this function */
if ((sym->usage & uMISSING)!=0 || (sym->usage & uPROTOTYPED)==0) {
char symname[2*sNAMEMAX+16]; /* allow space for user defined operators */
funcdisplayname(symname,sym->name);
if ((sym->usage & uMISSING)!=0)
error(4,symname); /* function not defined */
if ((sym->usage & uPROTOTYPED)==0)
error(71,symname); /* operator must be declared before use */
} /* if */
/* we don't want to use the redefined operator in the function that
* redefines the operator itself, otherwise the snippet below gives
* an unexpected recursion:
* fixed:operator+(fixed:a, fixed:b)
* return a + b
*/
if (sym==curfunc)
return FALSE;
/* for increment and decrement operators, the symbol must first be loaded
* (and stored back afterwards)
*/
if (oper==user_inc || oper==user_dec) {
assert(!savepri);
assert(lval!=NULL);
if (lval->ident==iARRAYCELL || lval->ident==iARRAYCHAR)
push1(); /* save current address in PRI */
rvalue(lval); /* get the symbol's value in PRI */
} /* if */
assert(!savepri || !savealt); /* either one MAY be set, but not both */
if (savepri) {
/* the chained comparison operators require that the ALT register is
* unmodified, so we save it here; actually, we save PRI because the normal
* instruction sequence (without user operator) swaps PRI and ALT
*/
push1(); /* right-hand operand is in PRI */
} else if (savealt) {
/* for the assignment operator, ALT may contain an address at which the
* result must be stored; this address must be preserved accross the
* call
*/
assert(lval!=NULL); /* this was checked earlier */
assert(lval->ident==iARRAYCELL || lval->ident==iARRAYCHAR); /* checked earlier */
push2();
} /* if */
/* push parameters, call the function */
paramspassed= (oper==NULL) ? 1 : numparam;
switch (paramspassed) {
case 1:
push1();
break;
case 2:
/* note that 1) a function expects that the parameters are pushed
* in reversed order, and 2) the left operand is in the secondary register
* and the right operand is in the primary register */
if (swapparams) {
push2();
push1();
} else {
push1();
push2();
} /* if */
break;
default:
assert(0);
} /* switch */
endexpr(FALSE); /* mark the end of a sub-expression */
pushval((cell)paramspassed*sizeof(cell));
assert(sym->ident==iFUNCTN);
ffcall(sym,paramspassed);
if (sc_status!=statSKIP)
markusage(sym,uREAD); /* do not mark as "used" when this call itself is skipped */
if (sym->x.lib!=NULL)
sym->x.lib->value += 1; /* increment "usage count" of the library */
sideeffect=TRUE; /* assume functions carry out a side-effect */
assert(resulttag!=NULL);
*resulttag=sym->tag; /* save tag of the called function */
if (savepri || savealt)
pop2(); /* restore the saved PRI/ALT that into ALT */
if (oper==user_inc || oper==user_dec) {
assert(lval!=NULL);
if (lval->ident==iARRAYCELL || lval->ident==iARRAYCHAR)
pop2(); /* restore address (in ALT) */
store(lval); /* store PRI in the symbol */
moveto1(); /* make sure PRI is restored on exit */
} /* if */
return TRUE;
}
SC_FUNC int matchtag(int formaltag,int actualtag,int allowcoerce)
{
if (formaltag!=actualtag) {
/* if the formal tag is zero and the actual tag is not "fixed", the actual
* tag is "coerced" to zero
*/
if (!allowcoerce || formaltag!=0 || (actualtag & FIXEDTAG)!=0)
return FALSE;
} /* if */
return TRUE;
}
/*
* The AMX pseudo-processor has no direct support for logical (boolean)
* operations. These have to be done via comparing and jumping. Since we are
* already jumping through the code, we might as well implement an "early
* drop-out" evaluation (also called "short-circuit"). This conforms to
* standard C:
*
* expr1 || expr2 expr2 will only be evaluated if expr1 is false.
* expr1 && expr2 expr2 will only be evaluated if expr1 is true.
*
* expr1 || expr2 && expr3 expr2 will only be evaluated if expr1 is false
* and expr3 will only be evaluated if expr1 is
* false and expr2 is true.
*
* Code generation for the last example proceeds thus:
*
* evaluate expr1
* operator || found
* jump to "l1" if result of expr1 not equal to 0
* evaluate expr2
* -> operator && found; skip to higher level in hierarchy diagram
* jump to "l2" if result of expr2 equal to 0
* evaluate expr3
* jump to "l2" if result of expr3 equal to 0
* set expression result to 1 (true)
* jump to "l3"
* l2: set expression result to 0 (false)
* l3:
* <- drop back to previous hierarchy level
* jump to "l1" if result of expr2 && expr3 not equal to 0
* set expression result to 0 (false)
* jump to "l4"
* l1: set expression result to 1 (true)
* l4:
*
*/
/* Skim over terms adjoining || and && operators
* dropval The value of the expression after "dropping out". An "or" drops
* out when the left hand is TRUE, so dropval must be 1 on "or"
* expressions.
* endval The value of the expression when no expression drops out. In an
* "or" expression, this happens when both the left hand and the
* right hand are FALSE, so endval must be 0 for "or" expressions.
*/
static int skim(int *opstr,void (*testfunc)(int),int dropval,int endval,
int (*hier)(value*),value *lval)
{
int lvalue,hits,droplab,endlab,opidx;
int allconst;
cell constval;
int index;
cell cidx;
stgget(&index,&cidx); /* mark position in code generator */
hits=FALSE; /* no logical operators "hit" yet */
allconst=TRUE; /* assume all values "const" */
constval=0;
droplab=0; /* to avoid a compiler warning */
for ( ;; ) {
lvalue=plnge1(hier,lval); /* evaluate left expression */
allconst= allconst && (lval->ident==iCONSTEXPR);
if (allconst) {
if (hits) {
/* one operator was already found */
if (testfunc==jmp_ne0)
lval->constval= lval->constval || constval;
else
lval->constval= lval->constval && constval;
} /* if */
constval=lval->constval; /* save result accumulated so far */
} /* if */
if (nextop(&opidx,opstr)) {
if (!hits) {
/* this is the first operator in the list */
hits=TRUE;
droplab=getlabel();
} /* if */
dropout(lvalue,testfunc,droplab,lval);
} else if (hits) { /* no (more) identical operators */
dropout(lvalue,testfunc,droplab,lval); /* found at least one operator! */
const1(endval);
jumplabel(endlab=getlabel());
setlabel(droplab);
const1(dropval);
setlabel(endlab);
lval->sym=NULL;
lval->tag=0;
if (allconst) {
lval->ident=iCONSTEXPR;
lval->constval=constval;
stgdel(index,cidx); /* scratch generated code and calculate */
} else {
lval->ident=iEXPRESSION;
lval->constval=0;
} /* if */
return FALSE;
} else {
return lvalue; /* none of the operators in "opstr" were found */
} /* if */
} /* while */
}
/*
* Reads into the primary register the variable pointed to by lval if
* plunging through the hierarchy levels detected an lvalue. Otherwise
* if a constant was detected, it is loaded. If there is no constant and
* no lvalue, the primary register must already contain the expression
* result.
*
* After that, the compare routines "jmp_ne0" or "jmp_eq0" are called, which
* compare the primary register against 0, and jump to the "early drop-out"
* label "exit1" if the condition is true.
*/
static void dropout(int lvalue,void (*testfunc)(int val),int exit1,value *lval)
{
if (lvalue)
rvalue(lval);
else if (lval->ident==iCONSTEXPR)
const1(lval->constval);
(*testfunc)(exit1);
}
static void checkfunction(value *lval)
{
symbol *sym=lval->sym;
if (sym==NULL || (sym->ident!=iFUNCTN && sym->ident!=iREFFUNC))
return; /* no known symbol, or not a function result */
if ((sym->usage & uDEFINE)!=0) {
/* function is defined, can now check the return value (but make an
* exception for directly recursive functions)
*/
if (sym!=curfunc && (sym->usage & uRETVALUE)==0) {
char symname[2*sNAMEMAX+16]; /* allow space for user defined operators */
funcdisplayname(symname,sym->name);
error(209,symname); /* function should return a value */
} /* if */
} else {
/* function not yet defined, set */
sym->usage|=uRETVALUE; /* make sure that a future implementation of
* the function uses "return <value>" */
} /* if */
}
/*
* Plunge to a lower level
*/
static int plnge(int *opstr,int opoff,int (*hier)(value *lval),value *lval,
char *forcetag,int chkbitwise)
{
int lvalue,opidx;
int count;
value lval2 = {0};
lvalue=plnge1(hier,lval);
if (nextop(&opidx,opstr)==0)
return lvalue; /* no operator in "opstr" found */
if (lvalue)
rvalue(lval);
count=0;
do {
if (chkbitwise && count++>0 && bitwise_opercount!=0)
error(212);
opidx+=opoff; /* add offset to index returned by nextop() */
plnge2(op1[opidx],hier,lval,&lval2);
if (op1[opidx]==ob_and || op1[opidx]==ob_or)
bitwise_opercount++;
if (forcetag!=NULL)
lval->tag=sc_addtag(forcetag);
} while (nextop(&opidx,opstr)); /* do */
return FALSE; /* result of expression is not an lvalue */
}
/* plnge_rel
*
* Binary plunge to lower level; this is very simular to plnge, but
* it has special code generation sequences for chained operations.
*/
static int plnge_rel(int *opstr,int opoff,int (*hier)(value *lval),value *lval)
{
int lvalue,opidx;
value lval2 = {0}; /* intialize, to avoid a compiler warning */
int count;
/* this function should only be called for relational operators */
assert(op1[opoff]==os_le);
lvalue=plnge1(hier,lval);
if (nextop(&opidx,opstr)==0)
return lvalue; /* no operator in "opstr" found */
if (lvalue)
rvalue(lval);
count=0;
lval->boolresult=TRUE;
do {
/* same check as in plnge(), but "chkbitwise" is always TRUE */
if (count>0 && bitwise_opercount!=0)
error(212);
if (count>0) {
relop_prefix();
*lval=lval2; /* copy right hand expression of the previous iteration */
} /* if */
opidx+=opoff;
plnge2(op1[opidx],hier,lval,&lval2);
if (count++>0)
relop_suffix();
} while (nextop(&opidx,opstr)); /* enddo */
lval->constval=lval->boolresult;
lval->tag=sc_addtag("bool"); /* force tag to be "bool" */
return FALSE; /* result of expression is not an lvalue */
}
/* plnge1
*
* Unary plunge to lower level
* Called by: skim(), plnge(), plnge2(), plnge_rel(), hier14() and hier13()
*/
static int plnge1(int (*hier)(value *lval),value *lval)
{
int lvalue,index;
cell cidx;
stgget(&index,&cidx); /* mark position in code generator */
lvalue=(*hier)(lval);
if (lval->ident==iCONSTEXPR)
stgdel(index,cidx); /* load constant later */
return lvalue;
}
/* plnge2
*
* Binary plunge to lower level
* Called by: plnge(), plnge_rel(), hier14() and hier1()
*/
static void plnge2(void (*oper)(void),
int (*hier)(value *lval),
value *lval1,value *lval2)
{
int index;
cell cidx;
stgget(&index,&cidx); /* mark position in code generator */
if (lval1->ident==iCONSTEXPR) { /* constant on left side; it is not yet loaded */
if (plnge1(hier,lval2))
rvalue(lval2); /* load lvalue now */
else if (lval2->ident==iCONSTEXPR)
const1(lval2->constval<<dbltest(oper,lval2,lval1));
const2(lval1->constval<<dbltest(oper,lval2,lval1));
/* ^ doubling of constants operating on integer addresses */
/* is restricted to "add" and "subtract" operators */
} else { /* non-constant on left side */
push1();
if (plnge1(hier,lval2))
rvalue(lval2);
if (lval2->ident==iCONSTEXPR) { /* constant on right side */
if (commutative(oper)) { /* test for commutative operators */
value lvaltmp = {0};
stgdel(index,cidx); /* scratch push1() and constant fetch (then
* fetch the constant again */
const2(lval2->constval<<dbltest(oper,lval1,lval2));
/* now, the primary register has the left operand and the secondary
* register the right operand; swap the "lval" variables so that lval1
* is associated with the secondary register and lval2 with the
* primary register, as is the "normal" case.
*/
lvaltmp=*lval1;
*lval1=*lval2;
*lval2=lvaltmp;
} else {
const1(lval2->constval<<dbltest(oper,lval1,lval2));
pop2(); /* pop result of left operand into secondary register */
} /* if */
} else { /* non-constants on both sides */
pop2();
if (dbltest(oper,lval1,lval2))
cell2addr(); /* double primary register */
if (dbltest(oper,lval2,lval1))
cell2addr_alt(); /* double secondary register */
} /* if */
} /* if */
if (oper) {
/* If used in an expression, a function should return a value.
* If the function has been defined, we can check this. If the
* function was not defined, we can set this requirement (so that
* a future function definition can check this bit.
*/
checkfunction(lval1);
checkfunction(lval2);
if (lval1->ident==iARRAY || lval1->ident==iREFARRAY) {
char *ptr=(lval1->sym!=NULL) ? lval1->sym->name : "-unknown-";
error(33,ptr); /* array must be indexed */
} else if (lval2->ident==iARRAY || lval2->ident==iREFARRAY) {
char *ptr=(lval2->sym!=NULL) ? lval2->sym->name : "-unknown-";
error(33,ptr); /* array must be indexed */
} /* if */
/* ??? ^^^ should do same kind of error checking with functions */
/* check whether an "operator" function is defined for the tag names
* (a constant expression cannot be optimized in that case)
*/
if (check_userop(oper,lval1->tag,lval2->tag,2,NULL,&lval1->tag)) {
lval1->ident=iEXPRESSION;
lval1->constval=0;
} else if (lval1->ident==iCONSTEXPR && lval2->ident==iCONSTEXPR) {
/* only constant expression if both constant */
stgdel(index,cidx); /* scratch generated code and calculate */
if (!matchtag(lval1->tag,lval2->tag,FALSE))
error(213); /* tagname mismatch */
lval1->constval=calc(lval1->constval,oper,lval2->constval,&lval1->boolresult);
} else {
if (!matchtag(lval1->tag,lval2->tag,FALSE))
error(213); /* tagname mismatch */
(*oper)(); /* do the (signed) operation */
lval1->ident=iEXPRESSION;
} /* if */
} /* if */
}
static cell truemodulus(cell a,cell b)
{
return (a % b + b) % b;
}
static cell calc(cell left,void (*oper)(),cell right,char *boolresult)
{
if (oper==ob_or)
return (left | right);
else if (oper==ob_xor)
return (left ^ right);
else if (oper==ob_and)
return (left & right);
else if (oper==ob_eq)
return (left == right);
else if (oper==ob_ne)
return (left != right);
else if (oper==os_le)
return *boolresult &= (char)(left <= right), right;
else if (oper==os_ge)
return *boolresult &= (char)(left >= right), right;
else if (oper==os_lt)
return *boolresult &= (char)(left < right), right;
else if (oper==os_gt)
return *boolresult &= (char)(left > right), right;
else if (oper==os_sar)
return (left >> (int)right);
else if (oper==ou_sar)
return ((ucell)left >> (ucell)right);
else if (oper==ob_sal)
return ((ucell)left << (int)right);
else if (oper==ob_add)
return (left + right);
else if (oper==ob_sub)
return (left - right);
else if (oper==os_mult)
return (left * right);
else if (oper==os_div)
return (left - truemodulus(left,right)) / right;
else if (oper==os_mod)
return truemodulus(left,right);
else
error(29); /* invalid expression, assumed 0 (this should never occur) */
return 0;
}
SC_FUNC int expression(int *constant,cell *val,int *tag,int chkfuncresult)
{
value lval = {0};
if (hier14(&lval))
rvalue(&lval);
if (lval.ident==iCONSTEXPR) { /* constant expression */
*constant=TRUE;
*val=lval.constval;
} else {
*constant=FALSE;
} /* if */
if (tag!=NULL)
*tag=lval.tag;
if (chkfuncresult)
checkfunction(&lval);
return lval.ident;
}
static cell array_totalsize(symbol *sym)
{
cell length;
assert(sym!=NULL);
assert(sym->ident==iARRAY || sym->ident==iREFARRAY);
length=sym->dim.array.length;
if (sym->dim.array.level > 0) {
cell sublength=array_totalsize(finddepend(sym));
if (sublength>0)
length=length+length*sublength;
else
length=0;
} /* if */
return length;
}
static cell array_levelsize(symbol *sym,int level)
{
assert(sym!=NULL);
assert(sym->ident==iARRAY || sym->ident==iREFARRAY);
assert(level <= sym->dim.array.level);
while (level-- > 0) {
sym=finddepend(sym);
assert(sym!=NULL);
} /* if */
return sym->dim.array.length;
}
/* hier14
*
* Lowest hierarchy level (except for the , operator).
*
* Global references: intest (reffered to only)
*/
SC_FUNC int hier14(value *lval1)
{
int lvalue;
value lval2 = {0},lval3 = {0};
void (*oper)(void);
int tok,level,i;
cell val;
char *st;
int bwcount;
cell arrayidx1[sDIMEN_MAX],arrayidx2[sDIMEN_MAX]; /* last used array indices */
cell *org_arrayidx;
bwcount=bitwise_opercount;
bitwise_opercount=0;
for (i=0; i<sDIMEN_MAX; i++)
arrayidx1[i]=arrayidx2[i]=0;
org_arrayidx=lval1->arrayidx; /* save current pointer, to reset later */
if (lval1->arrayidx==NULL)
lval1->arrayidx=arrayidx1;
lvalue=plnge1(hier13,lval1);
if (lval1->ident!=iARRAYCELL && lval1->ident!=iARRAYCHAR)
lval1->arrayidx=NULL;
if (lval1->ident==iCONSTEXPR) /* load constant here */
const1(lval1->constval);
tok=lex(&val,&st);
switch (tok) {
case taOR:
oper=ob_or;
break;
case taXOR:
oper=ob_xor;
break;
case taAND:
oper=ob_and;
break;
case taADD:
oper=ob_add;
break;
case taSUB:
oper=ob_sub;
break;
case taMULT:
oper=os_mult;
break;
case taDIV:
oper=os_div;
break;
case taMOD:
oper=os_mod;
break;
case taSHRU:
oper=ou_sar;
break;
case taSHR:
oper=os_sar;
break;
case taSHL:
oper=ob_sal;
break;
case '=': /* simple assignment */
oper=NULL;
if (intest)
error(211); /* possibly unintended assignment */
break;
default:
lexpush();
bitwise_opercount=bwcount;
lval1->arrayidx=org_arrayidx; /* restore array index pointer */
return lvalue;
} /* switch */
/* if we get here, it was an assignment; first check a few special cases
* and then the general */
if (lval1->ident==iARRAYCHAR) {
/* special case, assignment to packed character in a cell is permitted */
lvalue=TRUE;
} else if (lval1->ident==iARRAY || lval1->ident==iREFARRAY) {
/* array assignment is permitted too (with restrictions) */
if (oper)
return error(23); /* array assignment must be simple assigment */
assert(lval1->sym!=NULL);
if (array_totalsize(lval1->sym)==0)
return error(46,lval1->sym->name); /* unknown array size */
lvalue=TRUE;
} /* if */
/* operand on left side of assignment must be lvalue */
if (!lvalue)
return error(22); /* must be lvalue */
/* may not change "constant" parameters */
assert(lval1->sym!=NULL);
if ((lval1->sym->usage & uCONST)!=0)
return error(22); /* assignment to const argument */
lval3=*lval1; /* save symbol to enable storage of expresion result */
lval1->arrayidx=org_arrayidx; /* restore array index pointer */
if (lval1->ident==iARRAYCELL || lval1->ident==iARRAYCHAR
|| lval1->ident==iARRAY || lval1->ident==iREFARRAY)
{
/* if indirect fetch: save PRI (cell address) */
if (oper) {
push1();
rvalue(lval1);
} /* if */
lval2.arrayidx=arrayidx2;
plnge2(oper,hier14,lval1,&lval2);
if (lval2.ident!=iARRAYCELL && lval2.ident!=iARRAYCHAR)
lval2.arrayidx=NULL;
if (oper)
pop2();
if (!oper && lval3.arrayidx!=NULL && lval2.arrayidx!=NULL
&& lval3.ident==lval2.ident && lval3.sym==lval2.sym)
{
int same=TRUE;
assert(lval3.arrayidx==arrayidx1);
assert(lval2.arrayidx==arrayidx2);
for (i=0; i<sDIMEN_MAX; i++)
same=same && (lval3.arrayidx[i]==lval2.arrayidx[i]);
if (same)
error(226,lval3.sym->name); /* self-assignment */
} /* if */
} else {
if (oper){
rvalue(lval1);
plnge2(oper,hier14,lval1,&lval2);
} else {
/* if direct fetch and simple assignment: no "push"
* and "pop" needed -> call hier14() directly, */
if (hier14(&lval2))
rvalue(&lval2); /* instead of plnge2(). */
checkfunction(&lval2);
/* check whether lval2 and lval3 (old lval1) refer to the same variable */
if (lval2.ident==iVARIABLE && lval3.ident==lval2.ident && lval3.sym==lval2.sym) {
assert(lval3.sym!=NULL);
error(226,lval3.sym->name); /* self-assignment */
} /* if */
} /* if */
} /* if */
if (lval3.ident==iARRAY || lval3.ident==iREFARRAY) {
/* left operand is an array, right operand should be an array variable
* of the same size and the same dimension, an array literal (of the
* same size) or a literal string.
*/
int exactmatch=TRUE;
if (lval2.ident!=iARRAY && lval2.ident!=iREFARRAY)
error(33,lval3.sym->name); /* array must be indexed */
if (lval2.sym!=NULL) {
val=lval2.sym->dim.array.length; /* array variable */
level=lval2.sym->dim.array.level;
} else {
val=lval2.constval; /* literal array */
level=0;
/* If val is negative, it means that lval2 is a
* literal string. The string array size may be
* smaller than the destination array.
*/
if (val<0) {
val=-val;
exactmatch=FALSE;
} /* if */
} /* if */
if (lval3.sym->dim.array.level!=level)
return error(48); /* array dimensions must match */
else if (lval3.sym->dim.array.length<val
|| exactmatch && lval3.sym->dim.array.length>val)
return error(47); /* array sizes must match */
if (level>0) {
/* check the sizes of all sublevels too */
symbol *sym1 = lval3.sym;
symbol *sym2 = lval2.sym;
int i;
assert(sym1!=NULL && sym2!=NULL);
/* ^^^ sym2 must be valid, because only variables can be
* multi-dimensional (there are no multi-dimensional arrays),
* sym1 must be valid because it must be an lvalue
*/
assert(exactmatch);
for (i=0; i<level; i++) {
sym1=finddepend(sym1);
sym2=finddepend(sym2);
assert(sym1!=NULL && sym2!=NULL);
/* ^^^ both arrays have the same dimensions (this was checked
* earlier) so the dependend should always be found
*/
if (sym1->dim.array.length!=sym2->dim.array.length)
error(47); /* array sizes must match */
} /* for */
/* get the total size in cells of the multi-dimensional array */
val=array_totalsize(lval3.sym);
assert(val>0); /* already checked */
} /* if */
} else {
/* left operand is not an array, right operand should then not be either */
if (lval2.ident==iARRAY || lval2.ident==iREFARRAY)
error(6); /* must be assigned to an array */
} /* if */
if (lval3.ident==iARRAY || lval3.ident==iREFARRAY) {
memcopy(val*sizeof(cell));
} else {
check_userop(NULL,lval2.tag,lval3.tag,2,&lval3,&lval2.tag);
store(&lval3); /* now, store the expression result */
} /* if */
if (!oper && !matchtag(lval3.tag,lval2.tag,TRUE))
error(213); /* tagname mismatch (if "oper", warning already given in plunge2()) */
if (lval3.sym)
markusage(lval3.sym,uWRITTEN);
sideeffect=TRUE;
bitwise_opercount=bwcount;
return FALSE; /* expression result is never an lvalue */
}
static int hier13(value *lval)
{
int lvalue,flab1,flab2;
value lval2 = {0};
int array1,array2;
lvalue=plnge1(hier12,lval);
if (matchtoken('?')) {
flab1=getlabel();
flab2=getlabel();
if (lvalue) {
rvalue(lval);
} else if (lval->ident==iCONSTEXPR) {
const1(lval->constval);
error(lval->constval ? 206 : 205); /* redundant test */
} /* if */
jmp_eq0(flab1); /* go to second expression if primary register==0 */
if (hier14(lval))
rvalue(lval);
jumplabel(flab2);
setlabel(flab1);
needtoken(':');
if (hier14(&lval2))
rvalue(&lval2);
array1= (lval->ident==iARRAY || lval->ident==iREFARRAY);
array2= (lval2.ident==iARRAY || lval2.ident==iREFARRAY);
if (array1 && !array2) {
char *ptr=(lval->sym->name!=NULL) ? lval->sym->name : "-unknown-";
error(33,ptr); /* array must be indexed */
} else if (!array1 && array2) {
char *ptr=(lval2.sym->name!=NULL) ? lval2.sym->name : "-unknown-";
error(33,ptr); /* array must be indexed */
} /* if */
/* ??? if both are arrays, should check dimensions */
if (!matchtag(lval->tag,lval2.tag,FALSE))
error(213); /* tagname mismatch ('true' and 'false' expressions) */
setlabel(flab2);
if (lval->ident==iARRAY)
lval->ident=iREFARRAY; /* iARRAY becomes iREFARRAY */
else if (lval->ident!=iREFARRAY)
lval->ident=iEXPRESSION; /* iREFARRAY stays iREFARRAY, rest becomes iEXPRESSION */
return FALSE; /* conditional expression is no lvalue */
} else {
return lvalue;
} /* endif */
}
/* the order of the operators in these lists is important and must cohere */
/* with the order of the operators in the array "op1" */
static int list3[] = {'*','/','%',0};
static int list4[] = {'+','-',0};
static int list5[] = {tSHL,tSHR,tSHRU,0};
static int list6[] = {'&',0};
static int list7[] = {'^',0};
static int list8[] = {'|',0};
static int list9[] = {tlLE,tlGE,'<','>',0};
static int list10[] = {tlEQ,tlNE,0};
static int list11[] = {tlAND,0};
static int list12[] = {tlOR,0};
static int hier12(value *lval)
{
return skim(list12,jmp_ne0,1,0,hier11,lval);
}
static int hier11(value *lval)
{
return skim(list11,jmp_eq0,0,1,hier10,lval);
}
static int hier10(value *lval)
{ /* ==, != */
return plnge(list10,15,hier9,lval,"bool",TRUE);
} /* ^ this variable is the starting index in the op1[]
* array of the operators of this hierarchy level */
static int hier9(value *lval)
{ /* <=, >=, <, > */
return plnge_rel(list9,11,hier8,lval);
}
static int hier8(value *lval)
{ /* | */
return plnge(list8,10,hier7,lval,NULL,FALSE);
}
static int hier7(value *lval)
{ /* ^ */
return plnge(list7,9,hier6,lval,NULL,FALSE);
}
static int hier6(value *lval)
{ /* & */
return plnge(list6,8,hier5,lval,NULL,FALSE);
}
static int hier5(value *lval)
{ /* <<, >>, >>> */
return plnge(list5,5,hier4,lval,NULL,FALSE);
}
static int hier4(value *lval)
{ /* +, - */
return plnge(list4,3,hier3,lval,NULL,FALSE);
}
static int hier3(value *lval)
{ /* *, /, % */
return plnge(list3,0,hier2,lval,NULL,FALSE);
}
static int hier2(value *lval)
{
int lvalue,tok;
int tag,paranthese;
cell val;
char *st;
symbol *sym;
int saveresult;
tok=lex(&val,&st);
switch (tok) {
case tINC: /* ++lval */
if (!hier2(lval))
return error(22); /* must be lvalue */
assert(lval->sym!=NULL);
if ((lval->sym->usage & uCONST)!=0)
return error(22); /* assignment to const argument */
if (!check_userop(user_inc,lval->tag,0,1,lval,&lval->tag))
inc(lval); /* increase variable first */
rvalue(lval); /* and read the result into PRI */
sideeffect=TRUE;
return FALSE; /* result is no longer lvalue */
case tDEC: /* --lval */
if (!hier2(lval))
return error(22); /* must be lvalue */
assert(lval->sym!=NULL);
if ((lval->sym->usage & uCONST)!=0)
return error(22); /* assignment to const argument */
if (!check_userop(user_dec,lval->tag,0,1,lval,&lval->tag))
dec(lval); /* decrease variable first */
rvalue(lval); /* and read the result into PRI */
sideeffect=TRUE;
return FALSE; /* result is no longer lvalue */
case '~': /* ~ (one's complement) */
if (hier2(lval))
rvalue(lval);
invert(); /* bitwise NOT */
lval->constval=~lval->constval;
return FALSE;
case '!': /* ! (logical negate) */
if (hier2(lval))
rvalue(lval);
if (check_userop(lneg,lval->tag,0,1,NULL,&lval->tag)) {
lval->ident=iEXPRESSION;
lval->constval=0;
} else {
lneg(); /* 0 -> 1, !0 -> 0 */
lval->constval=!lval->constval;
lval->tag=sc_addtag("bool");
} /* if */
return FALSE;
case '-': /* unary - (two's complement) */
if (hier2(lval))
rvalue(lval);
/* make a special check for a constant expression with the tag of a
* rational number, so that we can simple swap the sign of that constant.
*/
if (lval->ident==iCONSTEXPR && lval->tag==sc_rationaltag && sc_rationaltag!=0) {
if (rational_digits==0) {
float *f = (float *)&lval->constval;
*f= - *f; /* this modifies lval->constval */
} else {
/* the negation of a fixed point number is just an integer negation */
lval->constval=-lval->constval;
} /* if */
} else if (check_userop(neg,lval->tag,0,1,NULL,&lval->tag)) {
lval->ident=iEXPRESSION;
lval->constval=0;
} else {
neg(); /* arithmic negation */
lval->constval=-lval->constval;
} /* if */
return FALSE;
case tLABEL: /* tagname override */
tag=sc_addtag(st);
lvalue=hier2(lval);
lval->tag=tag;
return lvalue;
case tDEFINED:
paranthese=0;
while (matchtoken('('))
paranthese++;
tok=lex(&val,&st);
if (tok!=tSYMBOL)
return error(20,st); /* illegal symbol name */
sym=findloc(st);
if (sym==NULL)
sym=findglb(st);
if (sym!=NULL && sym->ident!=iFUNCTN && sym->ident!=iREFFUNC && (sym->usage & uDEFINE)==0)
sym=NULL; /* symbol is not a function, it is in the table, but not "defined" */
val= (sym!=NULL);
if (!val && find_subst(st,strlen(st))!=NULL)
val=1;
clear_value(lval);
lval->ident=iCONSTEXPR;
lval->constval= val;
const1(lval->constval);
while (paranthese--)
needtoken(')');
return FALSE;
case tSIZEOF:
paranthese=0;
while (matchtoken('('))
paranthese++;
tok=lex(&val,&st);
if (tok!=tSYMBOL)
return error(20,st); /* illegal symbol name */
sym=findloc(st);
if (sym==NULL)
sym=findglb(st);
if (sym==NULL)
return error(17,st); /* undefined symbol */
if (sym->ident==iCONSTEXPR)
error(39); /* constant symbol has no size */
else if (sym->ident==iFUNCTN || sym->ident==iREFFUNC)
error(72); /* "function" symbol has no size */
else if ((sym->usage & uDEFINE)==0)
return error(17,st); /* undefined symbol (symbol is in the table, but it is "used" only) */
clear_value(lval);
lval->ident=iCONSTEXPR;
lval->constval=1; /* preset */
if (sym->ident==iARRAY || sym->ident==iREFARRAY) {
int level;
for (level=0; matchtoken('['); level++)
needtoken(']');
if (level>sym->dim.array.level)
error(28); /* invalid subscript */
else
lval->constval=array_levelsize(sym,level);
if (lval->constval==0 && strchr(lptr,PREPROC_TERM)==NULL)
error(224,st); /* indeterminate array size in "sizeof" expression */
} /* if */
const1(lval->constval);
while (paranthese--)
needtoken(')');
return FALSE;
case tTAGOF:
paranthese=0;
while (matchtoken('('))
paranthese++;
tok=lex(&val,&st);
if (tok!=tSYMBOL && tok!=tLABEL)
return error(20,st); /* illegal symbol name */
if (tok==tLABEL) {
tag=sc_addtag(st);
} else {
sym=findloc(st);
if (sym==NULL)
sym=findglb(st);
if (sym==NULL)
return error(17,st); /* undefined symbol */
if ((sym->usage & uDEFINE)==0)
return error(17,st); /* undefined symbol (symbol is in the table, but it is "used" only) */
tag=sym->tag;
} /* if */
exporttag(tag);
clear_value(lval);
lval->ident=iCONSTEXPR;
lval->constval=tag;
const1(lval->constval);
while (paranthese--)
needtoken(')');
return FALSE;
default:
lexpush();
lvalue=hier1(lval);
/* check for postfix operators */
if (matchtoken(';')) {
/* Found a ';', do not look further for postfix operators */
lexpush(); /* push ';' back after successful match */
return lvalue;
} else if (matchtoken(tTERM)) {
/* Found a newline that ends a statement (this is the case when
* semicolons are optional). Note that an explicit semicolon was
* handled above. This case is similar, except that the token must
* not be pushed back.
*/
return lvalue;
} else {
tok=lex(&val,&st);
switch (tok) {
case tINC: /* lval++ */
if (!lvalue)
return error(22); /* must be lvalue */
assert(lval->sym!=NULL);
if ((lval->sym->usage & uCONST)!=0)
return error(22); /* assignment to const argument */
/* on incrementing array cells, the address in PRI must be saved for
* incremening the value, whereas the current value must be in PRI
* on exit.
*/
saveresult= (lval->ident==iARRAYCELL || lval->ident==iARRAYCHAR);
if (saveresult)
push1(); /* save address in PRI */
rvalue(lval); /* read current value into PRI */
if (saveresult)
swap1(); /* save PRI on the stack, restore address in PRI */
if (!check_userop(user_inc,lval->tag,0,1,lval,&lval->tag))
inc(lval); /* increase variable afterwards */
if (saveresult)
pop1(); /* restore PRI (result of rvalue()) */
sideeffect=TRUE;
return FALSE; /* result is no longer lvalue */
case tDEC: /* lval-- */
if (!lvalue)
return error(22); /* must be lvalue */
assert(lval->sym!=NULL);
if ((lval->sym->usage & uCONST)!=0)
return error(22); /* assignment to const argument */
saveresult= (lval->ident==iARRAYCELL || lval->ident==iARRAYCHAR);
if (saveresult)
push1(); /* save address in PRI */
rvalue(lval); /* read current value into PRI */
if (saveresult)
swap1(); /* save PRI on the stack, restore address in PRI */
if (!check_userop(user_dec,lval->tag,0,1,lval,&lval->tag))
dec(lval); /* decrease variable afterwards */
if (saveresult)
pop1(); /* restore PRI (result of rvalue()) */
sideeffect=TRUE;
return FALSE;
case tCHAR: /* char (compute required # of cells */
if (lval->ident==iCONSTEXPR) {
lval->constval *= charbits/8; /* from char to bytes */
lval->constval = (lval->constval + sizeof(cell)-1) / sizeof(cell);
} else {
if (lvalue)
rvalue(lval); /* fetch value if not already in PRI */
char2addr(); /* from characters to bytes */
addconst(sizeof(cell)-1); /* make sure the value is rounded up */
addr2cell(); /* truncate to number of cells */
} /* if */
return FALSE;
default:
lexpush();
return lvalue;
} /* switch */
} /* if */
} /* switch */
}
/* hier1
*
* The highest hierarchy level: it looks for pointer and array indices
* and function calls.
* Generates code to fetch a pointer value if it is indexed and code to
* add to the pointer value or the array address (the address is already
* read at primary()). It also generates code to fetch a function address
* if that hasn't already been done at primary() (check lval[4]) and calls
* callfunction() to call the function.
*/
static int hier1(value *lval1)
{
int lvalue,index,tok,symtok;
cell val,cidx;
value lval2 = {0};
char *st;
char close;
symbol *sym;
lvalue=primary(lval1);
symtok=tokeninfo(&val,&st); /* get token read by primary() */
restart:
sym=lval1->sym;
if (matchtoken('[') || matchtoken('{') || matchtoken('(')) {
tok=tokeninfo(&val,&st); /* get token read by matchtoken() */
if (sym==NULL && symtok!=tSYMBOL) {
/* we do not have a valid symbol and we appear not to have read a valid
* symbol name (so it is unlikely that we would have read a name of an
* undefined symbol) */
error(29); /* expression error, assumed 0 */
lexpush(); /* analyse '(', '{' or '[' again later */
return FALSE;
} /* if */
if (tok=='[' || tok=='{') { /* subscript */
close = (char)((tok=='[') ? ']' : '}');
if (sym==NULL) { /* sym==NULL if lval is a constant or a literal */
error(28); /* cannot subscript */
needtoken(close);
return FALSE;
} else if (sym->ident!=iARRAY && sym->ident!=iREFARRAY){
error(28); /* cannot subscript, variable is not an array */
needtoken(close);
return FALSE;
} else if (sym->dim.array.level>0 && close!=']') {
error(51); /* invalid subscript, must use [ ] */
needtoken(close);
return FALSE;
} /* if */
stgget(&index,&cidx); /* mark position in code generator */
push1(); /* save base address of the array */
if (hier14(&lval2)) /* create expression for the array index */
rvalue(&lval2);
if (lval2.ident==iARRAY || lval2.ident==iREFARRAY)
error(33,lval2.sym->name); /* array must be indexed */
needtoken(close);
if (!matchtag(sym->x.idxtag,lval2.tag,TRUE))
error(213);
if (lval2.ident==iCONSTEXPR) { /* constant expression */
stgdel(index,cidx); /* scratch generated code */
if (lval1->arrayidx!=NULL) { /* keep constant index, for checking */
assert(sym->dim.array.level>=0 && sym->dim.array.level<sDIMEN_MAX);
lval1->arrayidx[sym->dim.array.level]=lval2.constval;
} /* if */
if (close==']') {
/* normal array index */
if (lval2.constval<0 || sym->dim.array.length!=0 && sym->dim.array.length<=lval2.constval)
error(32,sym->name); /* array index out of bounds */
if (lval2.constval!=0) {
/* don't add offsets for zero subscripts */
#if defined(BIT16)
const2(lval2.constval<<1);
#else
const2(lval2.constval<<2);
#endif
ob_add();
} /* if */
} else {
/* character index */
if (lval2.constval<0 || sym->dim.array.length!=0
&& sym->dim.array.length*((8*sizeof(cell))/charbits)<=(ucell)lval2.constval)
error(32,sym->name); /* array index out of bounds */
if (lval2.constval!=0) {
/* don't add offsets for zero subscripts */
if (charbits==16)
const2(lval2.constval<<1);/* 16-bit character */
else
const2(lval2.constval); /* 8-bit character */
ob_add();
} /* if */
charalign(); /* align character index into array */
} /* if */
} else {
/* array index is not constant */
lval1->arrayidx=NULL; /* reset, so won't be checked */
if (close==']') {
if (sym->dim.array.length!=0)
ffbounds(sym->dim.array.length-1); /* run time check for array bounds */
cell2addr(); /* normal array index */
} else {
if (sym->dim.array.length!=0)
ffbounds(sym->dim.array.length*(32/charbits)-1);
char2addr(); /* character array index */
} /* if */
pop2();
ob_add(); /* base address was popped into secondary register */
if (close!=']')
charalign(); /* align character index into array */
} /* if */
/* the indexed item may be another array (multi-dimensional arrays) */
assert(lval1->sym==sym && sym!=NULL); /* should still be set */
if (sym->dim.array.level>0) {
assert(close==']'); /* checked earlier */
/* read the offset to the subarray and add it to the current address */
lval1->ident=iARRAYCELL;
push1(); /* the optimizer makes this to a MOVE.alt */
rvalue(lval1);
pop2();
ob_add();
/* adjust the "value" structure and find the referenced array */
lval1->ident=iREFARRAY;
lval1->sym=finddepend(sym);
assert(lval1->sym!=NULL);
assert(lval1->sym->dim.array.level==sym->dim.array.level-1);
/* try to parse subsequent array indices */
lvalue=FALSE; /* for now, a iREFARRAY is no lvalue */
goto restart;
} /* if */
assert(sym->dim.array.level==0);
/* set type to fetch... INDIRECTLY */
lval1->ident= (char)((close==']') ? iARRAYCELL : iARRAYCHAR);
lval1->tag=sym->tag;
/* a cell in an array is an lvalue, a character in an array is not
* always a *valid* lvalue */
return TRUE;
} else { /* tok=='(' -> function(...) */
if (sym==NULL
|| (sym->ident!=iFUNCTN && sym->ident!=iREFFUNC))
{
if (sym==NULL && sc_status==statFIRST) {
/* could be a "use before declaration"; in that case, create a stub
* function so that the usage can be marked.
*/
sym=fetchfunc(lastsymbol,0);
if (sym!=NULL)
markusage(sym,uREAD);
} /* if */
return error(12); /* invalid function call */
} else if ((sym->usage & uMISSING)!=0) {
char symname[2*sNAMEMAX+16]; /* allow space for user defined operators */
funcdisplayname(symname,sym->name);
error(4,symname); /* function not defined */
} /* if */
callfunction(sym);
lval1->ident=iEXPRESSION;
lval1->constval=0;
lval1->tag=sym->tag;
return FALSE; /* result of function call is no lvalue */
} /* if */
} /* if */
if (sym!=NULL && lval1->ident==iFUNCTN) {
assert(sym->ident==iFUNCTN);
address(sym);
lval1->sym=NULL;
lval1->ident=iREFFUNC;
/* ??? however... function pointers (or function references are not (yet) allowed */
error(29); /* expression error, assumed 0 */
return FALSE;
} /* if */
return lvalue;
}
/* primary
*
* Returns 1 if the operand is an lvalue (everything except arrays, functions
* constants and -of course- errors).
* Generates code to fetch the address of arrays. Code for constants is
* already generated by constant().
* This routine first clears the entire lval array (all fields are set to 0).
*
* Global references: intest (may be altered, but restored upon termination)
*/
static int primary(value *lval)
{
char *st;
int lvalue,tok;
cell val;
symbol *sym;
if (matchtoken('(')){ /* sub-expression - (expression,...) */
pushstk((stkitem)intest);
pushstk((stkitem)sc_allowtags);
intest=0; /* no longer in "test" expression */
sc_allowtags=TRUE; /* allow tagnames to be used in parenthised expressions */
do
lvalue=hier14(lval);
while (matchtoken(','));
needtoken(')');
lexclr(FALSE); /* clear lex() push-back, it should have been
* cleared already by needtoken() */
sc_allowtags=(int)(long)popstk();
intest=(int)(long)popstk();
return lvalue;
} /* if */
clear_value(lval); /* clear lval */
tok=lex(&val,&st);
if (tok==tSYMBOL) {
/* lastsymbol is char[sNAMEMAX+1], lex() should have truncated any symbol
* to sNAMEMAX significant characters */
assert(strlen(st)<sizeof lastsymbol);
strcpy(lastsymbol,st);
} /* if */
if (tok==tSYMBOL && !findconst(st)) {
/* first look for a local variable */
if ((sym=findloc(st))!=0) {
if (sym->ident==iLABEL) {
error(29); /* expression error, assumed 0 */
const1(0); /* load 0 */
return FALSE; /* return 0 for labels (expression error) */
} /* if */
lval->sym=sym;
lval->ident=sym->ident;
lval->tag=sym->tag;
if (sym->ident==iARRAY || sym->ident==iREFARRAY) {
address(sym); /* get starting address in primary register */
return FALSE; /* return 0 for array (not lvalue) */
} else {
return TRUE; /* return 1 if lvalue (not label or array) */
} /* if */
} /* if */
/* now try a global variable */
if ((sym=findglb(st))!=0) {
if (sym->ident==iFUNCTN || sym->ident==iREFFUNC) {
/* if the function is only in the table because it was inserted as a
* stub in the first pass (i.e. it was "used" but never declared or
* implemented, issue an error
*/
if ((sym->usage & uPROTOTYPED)==0)
error(17,st);
} else {
if ((sym->usage & uDEFINE)==0)
error(17,st);
lval->sym=sym;
lval->ident=sym->ident;
lval->tag=sym->tag;
if (sym->ident==iARRAY || sym->ident==iREFARRAY) {
address(sym); /* get starting address in primary register */
return FALSE; /* return 0 for array (not lvalue) */
} else {
return TRUE; /* return 1 if lvalue (not function or array) */
} /* if */
} /* if */
} else {
return error(17,st); /* undefined symbol */
} /* endif */
assert(sym!=NULL);
assert(sym->ident==iFUNCTN || sym->ident!=iREFFUNC);
lval->sym=sym;
lval->ident=sym->ident;
lval->tag=sym->tag;
return FALSE; /* return 0 for function (not an lvalue) */
} /* if */
lexpush(); /* push the token, it is analyzed by constant() */
if (constant(lval)==0) {
error(29); /* expression error, assumed 0 */
const1(0); /* load 0 */
} /* if */
return FALSE; /* return 0 for constants (or errors) */
}
static void clear_value(value *lval)
{
lval->sym=NULL;
lval->constval=0L;
lval->tag=0;
lval->ident=0;
lval->boolresult=FALSE;
/* do not clear lval->arrayidx, it is preset in hier14() */
}
static void setdefarray(cell *string,cell size,cell array_sz,cell *dataaddr,int fconst)
{
/* The routine must copy the default array data onto the heap, as to avoid
* that a function can change the default value. An optimization is that
* the default array data is "dumped" into the data segment only once (on the
* first use).
*/
assert(string!=NULL);
assert(size>0);
/* check whether to dump the default array */
assert(dataaddr!=NULL);
if (sc_status==statWRITE && *dataaddr<0) {
int i;
*dataaddr=(litidx+glb_declared)*sizeof(cell);
for (i=0; i<size; i++)
stowlit(*string++);
} /* if */
/* if the function is known not to modify the array (meaning that it also
* does not modify the default value), directly pass the address of the
* array in the data segment.
*/
if (fconst) {
const1(*dataaddr);
} else {
/* Generate the code:
* CONST.pri dataaddr ;address of the default array data
* HEAP array_sz*sizeof(cell) ;heap address in ALT
* MOVS size*sizeof(cell) ;copy data from PRI to ALT
* MOVE.PRI ;PRI = address on the heap
*/
const1(*dataaddr);
/* "array_sz" is the size of the argument (the value between the brackets
* in the declaration), "size" is the size of the default array data.
*/
assert(array_sz>=size);
modheap((int)array_sz*sizeof(cell));
/* ??? should perhaps fill with zeros first */
memcopy(size*sizeof(cell));
moveto1();
} /* if */
}
static int findnamedarg(arginfo *arg,char *name)
{
int i;
for (i=0; arg[i].ident!=0 && arg[i].ident!=iVARARGS; i++)
if (strcmp(arg[i].name,name)==0)
return i;
return -1;
}
static int checktag(int tags[],int numtags,int exprtag)
{
int i;
assert(tags!=0);
assert(numtags>0);
for (i=0; i<numtags; i++)
if (matchtag(tags[i],exprtag,TRUE))
return TRUE; /* matching tag */
return FALSE; /* no tag matched */
}
enum {
ARG_UNHANDLED,
ARG_IGNORED,
ARG_DONE,
};
/* callfunction
*
* Generates code to call a function. This routine handles default arguments
* and positional as well as named parameters.
*/
static void callfunction(symbol *sym)
{
int close,lvalue;
int argpos; /* index in the output stream (argpos==nargs if positional parameters) */
int argidx=0; /* index in "arginfo" list */
int nargs=0; /* number of arguments */
int heapalloc=0;
int namedparams=FALSE;
value lval = {0};
arginfo *arg;
char arglist[sMAXARGS];
constvalue arrayszlst = { NULL, "", 0, 0}; /* array size list starts empty */
cell lexval;
char *lexstr;
assert(sym!=NULL);
arg=sym->dim.arglist;
assert(arg!=NULL);
stgmark(sSTARTREORDER);
for (argpos=0; argpos<sMAXARGS; argpos++)
arglist[argpos]=ARG_UNHANDLED;
if (!matchtoken(')')) {
do {
if (matchtoken('.')) {
namedparams=TRUE;
if (needtoken(tSYMBOL))
tokeninfo(&lexval,&lexstr);
else
lexstr="";
argpos=findnamedarg(arg,lexstr);
if (argpos<0) {
error(17,lexstr); /* undefined symbol */
break; /* exit loop, argpos is invalid */
} /* if */
needtoken('=');
argidx=argpos;
} else {
if (namedparams)
error(44); /* positional parameters must precede named parameters */
argpos=nargs;
} /* if */
stgmark((char)(sEXPRSTART+argpos));/* mark beginning of new expression in stage */
if (arglist[argpos]!=ARG_UNHANDLED)
error(58); /* argument already set */
if (matchtoken('_')) {
arglist[argpos]=ARG_IGNORED; /* flag argument as "present, but ignored" */
if (arg[argidx].ident==0 || arg[argidx].ident==iVARARGS) {
error(202); /* argument count mismatch */
} else if (!arg[argidx].hasdefault) {
error(34,nargs+1); /* argument has no default value */
} /* if */
if (arg[argidx].ident!=0 && arg[argidx].ident!=iVARARGS)
argidx++;
/* The rest of the code to handle default values is at the bottom
* of this routine where default values for unspecified parameters
* are (also) handled. Note that above, the argument is flagged as
* ARG_IGNORED.
*/
} else {
arglist[argpos]=ARG_DONE; /* flag argument as "present" */
lvalue=hier14(&lval);
switch (arg[argidx].ident) {
case 0:
error(202); /* argument count mismatch */
break;
case iVARARGS:
/* always pass by reference */
if (lval.ident==iVARIABLE || lval.ident==iREFERENCE) {
assert(lval.sym!=NULL);
if ((lval.sym->usage & uCONST)!=0 && (arg[argidx].usage & uCONST)==0) {
/* treat a "const" variable passed to a function with a non-const
* "variable argument list" as a constant here */
assert(lvalue);
rvalue(&lval); /* get value in PRI */
setheap_pri(); /* address of the value on the heap in PRI */
heapalloc++;
} else if (lvalue) {
address(lval.sym);
} else {
setheap_pri(); /* address of the value on the heap in PRI */
heapalloc++;
} /* if */
} else if (lval.ident==iCONSTEXPR || lval.ident==iEXPRESSION
|| lval.ident==iARRAYCHAR)
{
/* fetch value if needed */
if (lval.ident==iARRAYCHAR)
rvalue(&lval);
/* allocate a cell on the heap and store the
* value (already in PRI) there */
setheap_pri(); /* address of the value on the heap in PRI */
heapalloc++;
} /* if */
/* ??? handle const array passed by reference */
/* otherwise, the address is already in PRI */
if (lval.sym!=NULL)
markusage(lval.sym,uWRITTEN);
if (!checktag(arg[argidx].tags,arg[argidx].numtags,lval.tag))
error(213);
break;
case iVARIABLE:
if (lval.ident==iLABEL || lval.ident==iFUNCTN || lval.ident==iREFFUNC
|| lval.ident==iARRAY || lval.ident==iREFARRAY)
error(35,argidx+1); /* argument type mismatch */
if (lvalue)
rvalue(&lval); /* get value (direct or indirect) */
/* otherwise, the expression result is already in PRI */
assert(arg[argidx].numtags>0);
check_userop(NULL,lval.tag,arg[argidx].tags[0],2,NULL,&lval.tag);
if (!checktag(arg[argidx].tags,arg[argidx].numtags,lval.tag))
error(213);
argidx++; /* argument done */
break;
case iREFERENCE:
if (!lvalue || lval.ident==iARRAYCHAR)
error(35,argidx+1); /* argument type mismatch */
if (lval.sym!=NULL && (lval.sym->usage & uCONST)!=0 && (arg[argidx].usage & uCONST)==0)
error(35,argidx+1); /* argument type mismatch */
if (lval.ident==iVARIABLE || lval.ident==iREFERENCE) {
if (lvalue) {
assert(lval.sym!=NULL);
address(lval.sym);
} else {
setheap_pri(); /* address of the value on the heap in PRI */
heapalloc++;
} /* if */
} /* if */
/* otherwise, the address is already in PRI */
if (!checktag(arg[argidx].tags,arg[argidx].numtags,lval.tag))
error(213);
argidx++; /* argument done */
if (lval.sym!=NULL)
markusage(lval.sym,uWRITTEN);
break;
case iREFARRAY:
if (lval.ident!=iARRAY && lval.ident!=iREFARRAY
&& lval.ident!=iARRAYCELL)
{
error(35,argidx+1); /* argument type mismatch */
break;
} /* if */
if (lval.sym!=NULL && (lval.sym->usage & uCONST)!=0 && (arg[argidx].usage & uCONST)==0)
error(35,argidx+1); /* argument type mismatch */
/* Verify that the dimensions match with those in arg[argidx].
* A literal array always has a single dimension.
* An iARRAYCELL parameter is also assumed to have a single dimension.
*/
if (lval.sym==NULL || lval.ident==iARRAYCELL) {
if (arg[argidx].numdim!=1) {
error(48); /* array dimensions must match */
} else if (arg[argidx].dim[0]!=0) {
assert(arg[argidx].dim[0]>0);
if (lval.ident==iARRAYCELL) {
error(47); /* array sizes must match */
} else {
assert(lval.constval!=0); /* literal array must have a size */
/* A literal array must have exactly the same size as the
* function argument; a literal string may be smaller than
* the function argument.
*/
if (lval.constval>0 && arg[argidx].dim[0]!=lval.constval
|| lval.constval<0 && arg[argidx].dim[0] < -lval.constval)
error(47); /* array sizes must match */
} /* if */
} /* if */
if (lval.ident!=iARRAYCELL) {
/* save array size, for default values with uSIZEOF flag */
cell array_sz=lval.constval;
assert(array_sz!=0); /* literal array must have a size */
if (array_sz<0)
array_sz= -array_sz;
append_constval(&arrayszlst,arg[argidx].name,array_sz,0);
} /* if */
} else {
symbol *sym=lval.sym;
short level=0;
assert(sym!=NULL);
if (sym->dim.array.level+1!=arg[argidx].numdim)
error(48); /* array dimensions must match */
/* the lengths for all dimensions must match, unless the dimension
* length was defined at zero (which means "undefined")
*/
while (sym->dim.array.level>0) {
assert(level<sDIMEN_MAX);
if (arg[argidx].dim[level]!=0 && sym->dim.array.length!=arg[argidx].dim[level])
error(47); /* array sizes must match */
append_constval(&arrayszlst,arg[argidx].name,sym->dim.array.length,level);
sym=finddepend(sym);
assert(sym!=NULL);
level++;
} /* if */
/* the last dimension is checked too, again, unless it is zero */
assert(level<sDIMEN_MAX);
assert(sym!=NULL);
if (arg[argidx].dim[level]!=0 && sym->dim.array.length!=arg[argidx].dim[level])
error(47); /* array sizes must match */
append_constval(&arrayszlst,arg[argidx].name,sym->dim.array.length,level);
} /* if */
/* address already in PRI */
if (!checktag(arg[argidx].tags,arg[argidx].numtags,lval.tag))
error(213);
// ??? set uWRITTEN?
argidx++; /* argument done */
break;
} /* switch */
push1(); /* store the function argument on the stack */
endexpr(FALSE); /* mark the end of a sub-expression */
} /* if */
assert(arglist[argpos]!=ARG_UNHANDLED);
nargs++;
close=matchtoken(')');
if (!close) /* if not paranthese... */
if (!needtoken(',')) /* ...should be comma... */
break; /* ...but abort loop if neither */
} while (!close && freading && !matchtoken(tENDEXPR)); /* do */
} /* if */
/* check remaining function arguments (they may have default values) */
for (argidx=0; arg[argidx].ident!=0 && arg[argidx].ident!=iVARARGS; argidx++) {
if (arglist[argidx]==ARG_DONE)
continue; /* already seen and handled this argument */
/* in this first stage, we also skip the arguments with uSIZEOF and uTAGOF;
* these are handled last
*/
if ((arg[argidx].hasdefault & uSIZEOF)!=0 || (arg[argidx].hasdefault & uTAGOF)!=0) {
assert(arg[argidx].ident==iVARIABLE);
continue;
} /* if */
stgmark((char)(sEXPRSTART+argidx));/* mark beginning of new expression in stage */
if (arg[argidx].hasdefault) {
if (arg[argidx].ident==iREFARRAY) {
short level;
setdefarray(arg[argidx].defvalue.array.data,
arg[argidx].defvalue.array.size,
arg[argidx].defvalue.array.arraysize,
&arg[argidx].defvalue.array.addr,
(arg[argidx].usage & uCONST)!=0);
if ((arg[argidx].usage & uCONST)==0)
heapalloc+=arg[argidx].defvalue.array.arraysize;
/* keep the lengths of all dimensions of a multi-dimensional default array */
assert(arg[argidx].numdim>0);
if (arg[argidx].numdim==1) {
append_constval(&arrayszlst,arg[argidx].name,arg[argidx].defvalue.array.arraysize,0);
} else {
for (level=0; level<arg[argidx].numdim; level++) {
assert(level<sDIMEN_MAX);
append_constval(&arrayszlst,arg[argidx].name,arg[argidx].dim[level],level);
} /* for */
} /* if */
} else if (arg[argidx].ident==iREFERENCE) {
setheap(arg[argidx].defvalue.val);
/* address of the value on the heap in PRI */
heapalloc++;
} else {
int dummytag=arg[argidx].tags[0];
const1(arg[argidx].defvalue.val);
assert(arg[argidx].numtags>0);
check_userop(NULL,arg[argidx].defvalue_tag,arg[argidx].tags[0],2,NULL,&dummytag);
assert(dummytag==arg[argidx].tags[0]);
} /* if */
push1(); /* store the function argument on the stack */
endexpr(FALSE); /* mark the end of a sub-expression */
} else {
error(202,argidx); /* argument count mismatch */
} /* if */
if (arglist[argidx]==ARG_UNHANDLED)
nargs++;
arglist[argidx]=ARG_DONE;
} /* for */
/* now a second loop to catch the arguments with default values that are
* the "sizeof" or "tagof" of other arguments
*/
for (argidx=0; arg[argidx].ident!=0 && arg[argidx].ident!=iVARARGS; argidx++) {
constvalue *asz;
cell array_sz;
if (arglist[argidx]==ARG_DONE)
continue; /* already seen and handled this argument */
stgmark((char)(sEXPRSTART+argidx));/* mark beginning of new expression in stage */
assert(arg[argidx].ident==iVARIABLE); /* if "sizeof", must be single cell */
/* if unseen, must be "sizeof" or "tagof" */
assert((arg[argidx].hasdefault & uSIZEOF)!=0 || (arg[argidx].hasdefault & uTAGOF)!=0);
if ((arg[argidx].hasdefault & uSIZEOF)!=0) {
/* find the argument; if it isn't found, the argument's default value
* was a "sizeof" of a non-array (a warning for this was already given
* when declaring the function)
*/
asz=find_constval(&arrayszlst,arg[argidx].defvalue.size.symname,
arg[argidx].defvalue.size.level);
if (asz!=NULL) {
array_sz=asz->value;
if (array_sz==0)
error(224,arg[argidx].name); /* indeterminate array size in "sizeof" expression */
} else {
array_sz=1;
} /* if */
} else {
symbol *sym;
assert((arg[argidx].hasdefault & uTAGOF)!=0);
sym=findloc(arg[argidx].defvalue.size.symname);
if (sym==NULL)
sym=findglb(arg[argidx].defvalue.size.symname);
array_sz=(sym!=NULL) ? sym->tag : 0;
exporttag(array_sz);
} /* if */
const1(array_sz);
push1(); /* store the function argument on the stack */
endexpr(FALSE);
if (arglist[argidx]==ARG_UNHANDLED)
nargs++;
arglist[argidx]=ARG_DONE;
} /* for */
stgmark(sENDREORDER); /* mark end of reversed evaluation */
pushval((cell)nargs*sizeof(cell));
ffcall(sym,nargs);
if (sc_status!=statSKIP)
markusage(sym,uREAD); /* do not mark as "used" when this call itself is skipped */
if (sym->x.lib!=NULL)
sym->x.lib->value += 1; /* increment "usage count" of the library */
modheap(-heapalloc*sizeof(cell));
sideeffect=TRUE; /* assume functions carry out a side-effect */
delete_consttable(&arrayszlst); /* clear list of array sizes */
}
/* dbltest
*
* Returns a non-zero value if lval1 an array and lval2 is not an array and
* the operation is addition or subtraction.
*
* Returns the "shift" count (1 for 16-bit, 2 for 32-bit) to align a cell
* to an array offset.
*/
static int dbltest(void (*oper)(),value *lval1,value *lval2)
{
if ((oper!=ob_add) && (oper!=ob_sub))
return 0;
if (lval1->ident!=iARRAY)
return 0;
if (lval2->ident==iARRAY)
return 0;
return sizeof(cell)/2; /* 1 for 16-bit, 2 for 32-bit */
}
/* commutative
*
* Test whether an operator is commutative, i.e. x oper y == y oper x.
* Commutative operators are: + (addition)
* * (multiplication)
* == (equality)
* != (inequality)
* & (bitwise and)
* ^ (bitwise xor)
* | (bitwise or)
*
* If in an expression, code for the left operand has been generated and
* the right operand is a constant and the operator is commutative, the
* precautionary "push" of the primary register is scrapped and the constant
* is read into the secondary register immediately.
*/
static int commutative(void (*oper)())
{
return oper==ob_add || oper==os_mult
|| oper==ob_eq || oper==ob_ne
|| oper==ob_and || oper==ob_xor || oper==ob_or;
}
/* constant
*
* Generates code to fetch a number, a literal character (which is returned
* by lex() as a number as well) or a literal string (lex() stores the
* strings in the literal queue). If the operand was a number, it is stored
* in lval->constval.
*
* The function returns 1 if the token was a constant or a string, 0
* otherwise.
*/
static int constant(value *lval)
{
int tok,index,constant;
cell val,item,cidx;
char *st;
symbol *sym;
tok=lex(&val,&st);
if (tok==tSYMBOL && (sym=findconst(st))!=0){
lval->constval=sym->addr;
const1(lval->constval);
lval->ident=iCONSTEXPR;
lval->tag=sym->tag;
markusage(sym,uREAD);
} else if (tok==tNUMBER) {
lval->constval=val;
const1(lval->constval);
lval->ident=iCONSTEXPR;
} else if (tok==tRATIONAL) {
lval->constval=val;
const1(lval->constval);
lval->ident=iCONSTEXPR;
lval->tag=sc_rationaltag;
} else if (tok==tSTRING) {
/* lex() stores starting index of string in the literal table in 'val' */
const1((val+glb_declared)*sizeof(cell));
lval->ident=iARRAY; /* pretend this is a global array */
lval->constval=val-litidx; /* constval == the negative value of the
* size of the literal array; using a negative
* value distinguishes between literal arrays
* and literal strings (this was done for
* array assignment). */
} else if (tok=='{') {
int tag,lasttag=-1;
val=litidx;
do {
/* cannot call constexpr() here, because "staging" is already turned
* on at this point */
assert(staging);
stgget(&index,&cidx); /* mark position in code generator */
expression(&constant,&item,&tag,FALSE);
stgdel(index,cidx); /* scratch generated code */
if (constant==0)
error(8); /* must be constant expression */
if (lasttag<0)
lasttag=tag;
else if (!matchtag(lasttag,tag,FALSE))
error(213); /* tagname mismatch */
stowlit(item); /* store expression result in literal table */
} while (matchtoken(','));
needtoken('}');
const1((val+glb_declared)*sizeof(cell));
lval->ident=iARRAY; /* pretend this is a global array */
lval->constval=litidx-val; /* constval == the size of the literal array */
} else {
return FALSE; /* no, it cannot be interpreted as a constant */
} /* if */
return TRUE; /* yes, it was a constant value */
}