
Evas Programmers Guide
A guide to using Evas for Linux software development.

By Carsten Haitzler
raster@valinux.com

raster@rasterman.com

Copyright © 2001 Carsten Haitzler (The Rasterman)
This documentation is released under the same terms and license as the rest of Evas.

Last modified: 28 September 2001

"When your current canvas just isn’t good or fast enough
for your software’s needs..."

Prologue

The world is never perfect. There are always problems, and sometimes there are solutions, some of
them bad, some of them good and some of them completely insane. Evas is a solution to a problem,
that at the time had no other solution. The problem was that we needed a rendering abstraction
layer for X11 that allows for alpha blending, anti−aliasing and image manipulation on a structured,
rather than immediate−mode level. One that would also optimise the display of such structured
objects and also allow for hardware on existing and future machines to accelerate this rendering
without requiring the CPU to do all the work.

After looking around, it was found there were no other acceptable solutions that met these
requirements at all under X11 that were available as Open Source, and would run on Linux. Thus
was born Evas. Its goals are not lofty. Its implementation is not perfect. It is not miniscule nor all−
encompassing. It does not do 3D. It does not solve every graphics problem ever invented. What it
does do, is that it solves the problem it was intended to solve. It does it and does it well. If you find
you need something like this to solve your problems, then Evas may be your answer. If it is not quite
the perfect solution you may find it is a simple matter to add some code to make it the perfect
solution.

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Contents

Table of Contents
Contents...3
What is a Evas?..4
Immediate Mode Drawing..4
Structured Mode Drawing..4
The Canvas..4
Colours and Rendering Output..5
An Overview of Evas’s Objects...19

Images...19
Text...20
Gradients...21
Other Primitives...23

Tinting and Fading..24
Clipping...26
The Viewport and Resizing..27
Handling Exposes...28
How Evas Renders...28
The Rendering Engines...29
Event Handling within Evas...31
List Handling...31
Caveats, Limitations etc..32

Size Limit...32
Performance and Demand Loading..32
Background..32
Silent Errors...32
Co−ordinates...33
Layers..33

Update Rectangles..33
API Reference..34
Code Examples...163

Example 1:...164
Example 2:...166
Example 3:...169
Example 4:...172
Example 5:...175
Demo Example:..178

Evas Documentation Page 3

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

What is a Evas?

Evas is a canvas library, designed to enable the software developer using it produce windows that
contain the rendered output of a canvas − specifically an Evas canvas. There are many fundamental
differences between the drawing methods most programmers are used to (immediate mode
drawing) and those used by a canvas (structured mode drawing). First an explanation of what
constitutes each method of drawing is in order.

Immediate Mode Drawing

Immediate mode drawing is probably the most commonly found drawing mechanism. It is often the
basic mechanism by which any display system and hardware work. It usually involves issuing
drawing commands as they are needed and then having them processed by the display system
immediately. After the draw is done it appears in the destination − but no information about it is
actually ever retained. If that section of the screen is damaged (i.e. overlapping graphic is removed
or something changes) the commands to draw that section of the screen need to be re−issued.

This kind of rendering system puts less onus on the system to know much about what is going on
and leave that all up to the programmer writing for this system. It is good because what the software
does is very close to what the hardware does, and thus allows for better control by the software, but
the problem is, that this is only useful when the programmer knows the behaviour of the hardware,
its abilities and how to optimise for it. Since hardware varies so much between machines these
days, this is a hard job. This also requires the programmer to have a detailed knowledge of graphics
programming, principles and the experience, the will, and the time, to deal with these issue to make
a reasonably well written set of drawing routines for their application. Often this is not true.
Sometimes the experienced graphics guru wishes simply to save time, or the programmer does not
want to know much about the low level details and just wants to get the job done or get the effect
they are after.

Structured Mode Drawing

Structured mode (as its name implies) involves drawing graphics by describing its structure to the
system, instead of drawing it immediately. The structured mode system handles the drawing of the
objects however it sees as the best way to achieve that. The application developer describes the
contents of the window or screen to the system using primitives just as they would in immediate
mode, but the primitives are persistent and thus the drawing system will handle maintaining their
integrity on the screen, rather than the programmer. Since it also knows where these primitives are
ahead of time, and what their properties are, the system is able to perform complex optimisations
and analysis on the current display to minimise the effort in redrawing all or any section of it since it
was last updated. Objects remain in the system until destroyed, so the application still has to
manage their creation and destruction, but the drawing is all handled by the structured mode
system, and not the software the developer is working on, freeing them to think of higher level
problems instead.

Evas is a structured mode rendering system and thus if you want to use it, you need to think in
terms of a structured mode system instead of an immediate mode one. Once you get the hang of
this, it all becomes easy from there on in and Evas will begin to show its benefits.

The Canvas

The canvas is an area − like a virtual piece of paper, that contains objects that are in that canvas.
The actual size of that area is infinite, but the canvas only looks at a certain finite sized section of
that area at any one time. This rectangular section of the canvas area being looked at is called a
viewport. The only part of that canvas that is ever visible to the user is the area this viewport covers.

Evas Documentation Page 4

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

You can effectively scroll around the canvas simply by changing the viewport location, and you can
zoom in and out by simply changing the viewport size (and not change the output window size).

You can create canvas objects anywhere in the canvas, such as images, rectangles, lines,
polygons, text strings and more. These objects take up a certain amount of space in the canvas and
can be hidden, visible, raised above or below other objects (within the layer that that object lives in,
and there are approximately 4 billion layers to chose from). They can fade in and out, be resized,
coloured, and much much more. The objects can have callback functions set on them that are called
when certain events happen to them. Properties can be attached to the objects, and they can be
named too. It is this flexibility that lets you do a lot with very little in the way of foot−work on the part
of the programmer.

Colours and Rendering Output

One of the biggest problems with dealing with X is colours. X itself knows nothing about colour when
drawing. It ONLY understands pixel numerical values. To properly explain this means we need to
take a journey into framebuffers, history, and how X works.

A framebuffer is a large chunk of memory (generally memory residing on the graphics hardware
itself to allow for more efficient access by the display output hardware) which is normally arranged in
a linear format, from the top−left corner of the display, row by row from left top right until the bottom
of the visible display is reached. Each pixel is represented by 1 or more bytes (in 256 colour mode, 8
bit or 8bpp it is 1 byte per pixel. In 16bpp, 65536 colours, it’s 2 bytes per pixel, etc.). The value of
this byte or set of bytes determines the colour to use for that pixel (a pixel being the smallest
element of display − a single point in a fixed grid of these points that has a colour value).

Each pixel’s colour is described by the pixel values in the framebuffer, in a fashion somewhat akin to
the following diagram:

Evas Documentation Page 5

Pixel

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

You will notice 32 and 15 bit displays modes have "Unused" bits. The reason for this is speed. PC
hardware is fastest at accessing data on 4 byte (DWORD) boundaries − this is why 32bit colour has
an extra byte of padding to make access to the framebuffer fast for both graphics display hardware
and the CPU. It uses extra memory space, but does speed things up.

15 bit colour has 1 bit of extra padding to align the pixels to 2 byte (WORD) boundaries. This extra
bit is thrown away − but it means you have the same number of bits for all colour channels, instead
of the differing bits per channel that 16bit colour has. The quality for 16bit colour is slightly higher
than 15bit (since it has double the number of colours), but it means "pure" gradient like grey for
example, shows colouring since the red, green and blue values can NEVER be equal unless the
colour is black or white. Shades in between get slightly coloured. Of course for real life images such
as photos, and when dithering is used, this effect becomes unimportant and thus the extra gammut
of colours becomes useful.

8bit colour can be treated 2 ways. We can allocate a static colour map where we have 3 bits for red,
3 for green and 2 for blue, but we cannot change the colours when using this to be a set other than
this limited set of 256 colours. Being only 256 the quality degredation is quite noticeable. This is why
there is another colour mode (which is much more commonly used), called pseudo colour. This is
where applications can allocate a colour or a set of colours and so this set of 256 changes all the
time and is dynamic, and the applications only allocate colours in this limited set of 256 that they
actually need, thus conserving colours. If a colour cannot be allocated the closest match is given to
the application and the application is told how close a match it is. It is the programmers job to deal
with this.

The problem with this is if it is not known ahead of time what colours are needed it can happen you
allocate a lot of similar colours at the start because, lets say all your images are grey scale to start
with, and then have all these greys and no colour entries left to allocate reds or blues for images that
may be used later. Generally this is solved by pre−allocating a set of colours that spans the entire
range of colours you could possibly want. This is often known as allocating a colour cube. Evas (or
more correctly, Imlib2) uses this scheme of allocating colours.

Given that your display hardware, and thus X−Server, can be using any of these display modes (or
possibly other ones not even discussed here) it starts to look like a bit of work handling the rendering
and display of colour image data in X. Now let’s discuss dithering. When you have a limited set of
colours, lets say 256, you may want to draw "smooth" shades − lets take for example a gradient
from black to white. Let’s for now assume we use a 6x6x6 colour cube (that means 6 values for red,
green and blue) which total 216 colours, and is the same set applications such as Netscape try to
allocate for their display. At best we have 6 grey colours (including black and white) to use. This

Evas Documentation Page 6

Red Blue UnusedGreen Index

32 bit Colour (RGBx)

24 bit Colour (RGB)

16 bit Colour (RGB565) 15 bit Colour (RGB555)

8 bit Colour (RGB332) 8 Colour (Indexed)

Some common pixel display modes found on PC−like hardware
(Note: there are other display modes, but only some of the
most common ones are listed here for brevity sake)

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

leads to horrid "bands" on the screen thus completely destroying the desired effect of having a
smooth gradient transition from black to white. Here is an example:

Notice the pronounced "banding" effect from left to right. There is a way of improving this by using a
technique called dithering. This means you alternate between 2 or more colours within a small space
to get the effect of having more colours than you really have. To the human eye at a bit of a distance
the effect is quite convincing and might look something like this (using the same set of colours):

Doing dithering as well as handling colour allocation, mapping and more all at once and keeping the
output looking good is quite a lot of work and requires a lot of graphics knowledge on the part of the
programmer. The advantage of Evas is that it does this all for the developer, saving them a lot of
hard work. Evas also does this with large amounts of optimisations, meaning the display not only
looks good, but performs nicely.

As an example, here are some outputs from Evas at various display depths (colour depths). You
should be able to easily tell the difference between the lower colour depths, and if you look closely
you will notice that even in 16bit color dithering occurs to get smoother gradients and colour
transitions.

Evas Documentation Page 7

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

(8bpp − 216 colours)

Evas Documentation Page 8

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

(8bpp − 128 colours)

Evas Documentation Page 9

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

(8bpp 64 colours)

Evas Documentation Page 10

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

(8bpp − 32 colours)

Evas Documentation Page 11

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

(8bpp − 16 colours)

Evas Documentation Page 12

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

(8bpp − 8 colours)

Evas Documentation Page 13

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

(1bpp − 2 colour monochrome B&W)

Evas Documentation Page 14

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

(16bit − 65 thousand colours)

Evas Documentation Page 15

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

(24/32 bit − 16.7 million colors)

Evas Documentation Page 16

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

One thing you will have to note when using Evas is that the output quality for Evas will vary
depending on the rendering engine being used. For example you may use the "3D Hardware
(OpenGL)" rendering engine but Evas cannot guarantee the quality of the output of your OpenGL
implementation, thus something the programmer should be aware of. It is a wise idea for the
developer to ALWAYS provide a way for the user to select what rendering output to use for the
application that uses Evas as stability of OpenGL and their X implementation may vary wildly, as
well as quality and speed. There are also some cases where the software rendering engine
outperforms the OpenGL engine by large amounts.

The developer should also realise that some rendering engines such as the X11 engine (Basic
Hardware) do not do things such as alpha−blend for speed reasons. Basic X11 primitives cannot
alpha blend and thus this engine cannot do it either (without going through hoops and thus
degrading performance even below that of the software rendering engine) − but it should work at
high speed on even the lowest end systems with slow CPU’s and very basic graphics hardware.

For example here is the software rendering engine’s output:

And here is what it looks like when you use the X11 rendering engine:

Evas Documentation Page 17

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Notice that the soft shadows under the text and bubbles are now hard thresholds because the
engine doesn’t alpha−blend. The rendering engine will always try and output as accurately as it can
given the constraints of the hardware set it is written to use. In general the software rendering
engine will always be the most accurate, but possibly may not always be the fastest.

Evas Documentation Page 18

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

An Overview of Evas’s Objects

Evas provides a set of primitives for the programmer to work with. This is a quick overview of these
primitives and how they work and how Evas helps you do amazing things with them that take you,
the programmer no time flat to achieve, because Evas does all the hard work for you.

Images

One of the most versatile and appealing objects to use is the image object. You simply tell Evas
where the image file is located, where to put the image what size the object is to be and how to fill
the image object with the image data, and Evas handles the rest. This makes dealing with images in
Evas child’s play. Here is a quick example of how it would work:

obj ect = evas_add_i mage_f r om_f i l e(evas, " f l ower . png") ;
evas_move(evas, obj ect , 10. 0, 30. 0) ;
evas_show(evas, obj ect) ;

And it would look something like this:

By default, image objects are the size of the original image (in pixels) in units in the canvas. If we
wish to make the object larger, and have the image scale up or down in size we could do:

evas_r esi ze(evas, obj ect , 320. 0, 240. 0) ;
evas_set _i mage_f i l l (evas, obj ect , 0. 0, 0. 0, 320. 0, 240. 0) ;

Now our canvas would look like this:

Evas Documentation Page 19

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Easy, isn’t it? Now let’s say we want to have a 300x200 unit size rectangle filled with this image we
loaded, but we want it to tile (repeat) starting the tile at co−ordinate 0,0 relative to the top−left corner
of the image object area, but have the tiled image size be 20x50.

evas_r esi ze(evas, obj ect , 300. 0, 200. 0) ;
evas_set _i mage_f i l l (evas, obj ect , 0. 0, 0. 0, 20. 0, 50. 0) ;

Our result would be something like this:

You may think "I can do this just as easily with normal X drawing primitives and a little extra sugar
thrown in" but Evas does a whole lot more for you. You never need to know how to render the
objects or handle re−rendering them. Evas does this, and optimises it for you. It handles layering
and re−sizing, it optimises everything to minimise CPU effort with a dynamic set of objects. It
handles the work to the point where ALL you need to do is create, destroy, show, hide, move, resize
etc. objects and Evas does the rest of the nasty work for you.

As you can see − the program has to know and do very little. There are many powerful things you
can do, like fade images in and out, re−colour them so they look tinted, have them rendered only
within a certain area of the canvas, and much more.

Text

Text is a very important part of many applications. Evas of course provides a nice simple way of
getting text into the Evas canvas you have up, without much fuss or bother AND to boot it will anti−

Evas Documentation Page 20

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

alias the text, so your character edges are smooth and not jagged, AND allow of the text to be
semi−transparent and much more to boot.

Text allows you to display information in your Evas without needing image objects with pre−rendered
text. But first you have to realise fonts are handled a little differently. First there is a font path. This is
a list of directories where to find font files. Evas supports truetype fonts only − some may think this
bad, but there are more truetype fonts than any other font format out there, and many are very good
quality.

Evas looks at the fonts in a directory by their file name, so a font you reference in Evas as "myfont",
Evas will look in the directories (in the order given) for a "myfont.ttf" file. It is case sensitive, but this
system proves to be nice and simple. Here is a simple example.

obj ect = evas_add_t ext (evas, " not epad" , 18, " Her e i s a l i ne of t ext ! ") ;
evas_move(evas, obj ect , 120. 0, 50. 0) ;
evas_set _col or (evas, obj ect , 0, 0, 0, 255) ;
evas_show(evas, obj ect) ;

This should create a text string object with its top−left starting at 120.0, 50.0 in the Evas canvas,
with the "notepad" font at size 18, with the text "Here is a line of text!", and in solid black (Red = 0,
Green = 0, Blue = 0, Alpha = 255). This is what it would look like:

As you can see − it is really easy to create some text in an Evas canvas, and it is just as easy to
change its contents with calls such as the following

evas_set _t ext (evas, obj ect , " Some new t ext her e") ;
evas_set _f ont (evas, obj ect , " ar i al " , 30) ;
evas_set _col or (evas, obj ect , 255, 0, 0, 255) ;

Just modifying the properties of an object this way directly leads to it changing as you would expect.
There are enough text query calls too, to implement almost anything you need using text objects,
including text entry boxes, word processors, HTML and other text formatting engines and much,
much more.

Gradients

Another useful primitive that can be used is the Gradient Box primitive. Basically this is a rectangular
object that is filled with a linear range of colours at an arbitrary angle defined as part of the
properties of that object.

Gradients are useful for when you want to fill a background or rectangle with something other than a
Evas Documentation Page 21

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

solid colour, but do not want to go to the expense of needing an image for it. They can be used to
highlight areas with lighting and shadow effects and many other things.

Creating and managing these objects, like almost everything else, is also child’s play. Take a look at
this:

obj ect = evas_add_gr adi ent _box(evas) ;
evas_move(evas, obj ect , 150. 0, 100. 0) ;
evas_r esi ze(evas, obj ect , 200. 0, 120. 0) ;
gr adi ent = evas_gr adi ent _new() ;
evas_gr adi ent _add_col or (gr adi ent , 255, 255, 255, 255, 10) ;
evas_gr adi ent _add_col or (gr adi ent , 255, 255, 0, 255, 10) ;
evas_gr adi ent _add_col or (gr adi ent , 255, 0, 0, 255, 10) ;
evas_gr adi ent _add_col or (gr adi ent , 0, 0, 128, 255, 10) ;
evas_gr adi ent _add_col or (gr adi ent , 0, 0, 128, 0, 10) ;
evas_set _gr adi ent (evas, obj ect , gr adi ent) ;
evas_gr adi ent _f r ee(gr adi ent) ;
evas_set _angl e(evas, obj ect , 290. 0) ;
evas_show(evas, obj ect) ;

Now the program we are developing looks now something like this when displayed in the Evas
canvas:

As you see, you create the gradient box object, place it somewhere in your Evas and set its size.
Now you get to define the list of colours it is to use (from start of the gradient to end) and their
relative "distance" apart. This is relative to the length of the gradient, not an absolute, so the total
length is the sum of all the distances (except the first element in the gradient whose distance is
ignored). We add in white, yellow, red, dark blue then "transparent" in the gradient in order, then set
this gradient to be used by this gradient box. Once we are done setting up this gradient we can set it
to be used by more than one gradient box, and when done with it finally, we can just free it. All we
do now is determine the angle the gradient is at in the box (with the angle in degrees being the first
element of the gradient and the angle starting at 12:00 o’clock (0 degrees), going all the way up to
360 degrees in clock−wise rotation), and then we show the object. All we need to do now is move
and resize it, show it, change the angle etc. and Evas handles it for us.

This is not where it ends. There are other primitives that Evas supports. Polygons, Lines and
Rectangles complete this list for now, but future plans at a later point may mean Video objects (e.g.
MPEG streams as objects), curved objects (ellipses, circles, splines etc.) and more, but for now they
are not supported. Some of these are rather complex to implement and thus may take some time
before they come to fruition − especially the video objects, as most machines these days are
already struggling to have enough power to play DVD MPEG2 streams.

Evas Documentation Page 22

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Other Primitives

At your disposal you also have Rectangles, Lines and Polygons too. You can use these to fill in
backgrounds, simulate circles (with polygons) and much more. They are versatile and simple and let
you do basic drawing without requiring on−disk data to generate it from.

obj ect = evas_add_r ect angl e(evas) ;
evas_move(evas, obj ect , 20. 0, 130. 0) ;
evas_r esi ze(evas, obj ect , 50. 0, 70. 0) ;
evas_set _col or (evas, obj ect , 20. 0, 50. 0, 100. 0, 130. 0) ;
evas_show(evas, obj ect) ;

Here we add a simple rectangle that’s blue and partially transparent. It’s easy to add − no problems.
It may seem a fair bit of set−up code, but now we can just move, resize, show hide etc. the object
whenever we want a change − Evas does all the rest for us − including layering, obscuring, figuring
how to re−render it and optimising the rendering to only render what changed and much much much
more.

obj ect = evas_add_pol y(evas) ;
evas_add_poi nt (evas, obj ect , 0. 0, 0. 0) ;
evas_add_poi nt (evas, obj ect , 150. 0, 80. 0) ;
evas_add_poi nt (evas, obj ect , 210. 0, 150. 0) ;
evas_add_poi nt (evas, obj ect , 80. 0, 110. 0) ;
evas_add_poi nt (evas, obj ect , 20. 0, 30. 0) ;
evas_set _col or (evas, obj ect , 200. 0, 40. 0, 0. 0, 130. 0) ;
evas_move(evas, obj ect , 20. 0, 220. 0) ;
evas_show(evas, obj ect) ;

A polygon, reddish/orange, partially transparent with 5 points. We create the polygon relative to the
top left of its bounding box then just move it where we want it later − this makes it easy to just move
polygons around without having to reset their co−ordinates. Just like with polygons − Evas handles
optimising all the other stuff surrounding these objects for us.

obj ect = evas_add_l i ne(evas) ;
evas_set _l i ne_xy(evas, obj ect , 220. 0, 240. 0, 390. 0, 380. 0) ;
evas_set _col or (evas, obj ect , 30. 0, 80. 0, 80. 0, 200. 0) ;
evas_show(evas, obj ect) ;

And a line. Anti−aliased. Simple. Just change its colour and co−ordinates when you want. Evas
does the rest.

And now with these primitives added out Evas canvas will look like this:

Evas Documentation Page 23

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

There are many other important parts of using Evas to achieve the look and feel you want in your
application. It is important you know what else is available so you don’t do things "incorrectly" and as
a result get slower performance or bad display quality.

Tinting and Fading

Doing effects in Evas is almost child’s play like everything else. You can tint and fade image objects,
for example, with very little effort. Let’s start a new Evas with a single image object and a textured
background.

Now lets "tint" this object red. That’s easy:

evas_set _col or (evas, obj ect , 255, 0, 0, 255) ;

When you set the colour of an image, every pixel of that image is multiplied by the colour value. So
pseudo−code wise output.red = (pixel.red * color.red) / 255, and the same for the green, blue and
alpha channels. Here is the result of multiplication by RGB 255,0,0,255 :

Now let’s try tinting the cube yellow:

evas_set _col or (evas, obj ect , 255, 255, 0, 255) ;

Evas Documentation Page 24

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

How about blue?

evas_set _col or (evas, obj ect , 0, 0, 255, 255) ;

Let’s try fading the cube half−out:

evas_set _col or (evas, obj ect , 255, 255, 255, 128) ;

Evas Documentation Page 25

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Let’s try making the cube just plain darker than it normally is:

evas_set _col or (evas, obj ect , 128, 128, 128, 255) ;

As you can see, fading images out, tinting images is almost no work at all. In addition to being able
to scale them, raise and lower them above and below other objects, have them alpha blend and
more, you have a pretty simple way of creating complex effects within an Evas’ canvas.

Clipping

Now let’s look at clipping in Evas. Clipping is the process by which you "clip off" bits of what you are
drawing that lie outside the area you are clipping to. For example − you have an image and you clip
it to a box that is smaller than the image placed in the middle of the images location. This means the
image will now only be drawn in the area that clips it − i.e. this rectangle. The parts of the image
lying outside the bounds of this rectangle will never be drawn. You can also think of this as
windowing − allowing only what you can see through the "window" (or clip region) to show through.
In theory you can use any object as a "window", or clip object, but due to back−end rendering
engine limitations, Evas only supports using rectangle objects as clip objects for now. Using any
other kind of object has undefined results. Clip objects can be used to implement things such as
viewports, windows and much more − you will need to use your imagination to really use them fully.

Evas Documentation Page 26

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Also just like a window that may be stained a certain colour, Evas can let you "Tint" or "Stain" the
objects clipped by a clip object. Just like you set the colour of an object like and Image, and it gets
"tinted", the same applies to clip objects. If the clip objects colour is opaque white (255, 255, 255,
255), it does not affect the colour of any object it clips − it merely limits the drawing region, but if the
clip object has any other colour its RGBA values are multiplied by the colour of the objects it clips −
thus being able to tint and fade objects that are clipped all in one go.

Let’s say we already have an object we created and want it clipped to a rectangle (or we may want
more objects clipped to this rectangle):

cl i p = evas_add_r ect angl e(evas) ;
evas_move(evas, cl i p, 20. 0, 20. 0) ;
evas_r esi ze(evas, cl i p, 180. 0, 180. 0) ;
evas_set _col or (evas, cl i p, 255, 255, 255, 255) ;
evas_show(evas, cl i p) ;
evas_set _cl i p(evas, obj ect , c l i p) ;

So if we have lets say we have 8 cube image objects, and want them clipped to this rectangle, it will
look something like this:

Notice that the cubes in the image here are "clipped" to an invisible rectangle that as per the code
snippet above, has co−ordinates of 20.0, 20.0 and has a size of 180.0 x 180.0. You could easily
fade the objects clipped by this rectangle out by changing the alpha value of the clip rectangle’s
colour. The same would apply to tinting. You can move the clip rectangle around and resize it and
things will behave as expected (i.e. you have a virtual window moving around with the objects
clipped by the clipping rectangle object only showing through where the clip object is), and you can
also show and hide it to show and hide its clipped contents. Clip objects can also be clipped by other
clip objects and so on recursively. You can use this specialised application of an object for doing
things like building widget sets, viewports within an Evas (clip objects negate the need for being able
to embed an Evas within an Evas). It is hoped one day that other objects will be able to be used as
clip objects (polygons, text strings, gradients, image objects etc.).

The Viewport and Resizing

Evas operates on the concept of a viewport. A viewport is a rectangular region of a large area that
defines what smaller part of that area we are looking at. In Evas you tell Evas what the location and
size of the viewport is. An Evas canvas is almost infinite in size (as large a value as can be fit in a
double precision number in both X and Y directions), and thus you need to tell Evas what limited
area of the "world" (or canvas) you are looking at. This area is the viewport.

Evas also requires you tell it the size of the window it’s outputting to. This is necessary for some of

Evas Documentation Page 27

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

the back−end rendering engines, but also is useful for being able to zoom and pan across the
canvas. If you do not change the output size of your Evas, but change the viewport size, you will
effectively zoom and and out of your Evas canvas. By changing the viewport location you can scroll
around your Evas. If the size of your window changes you MUST tell Evas the new drawable output
size before rendering again − or things will not display correctly.

The viewport looks like this when applied to an Evas canvas:

Handling Exposes

Evas itself does not hook to your event layer at all. It relies on you feeding events into it. One of
these, required for consistent output, is telling Evas when a section of its output has been "exposed"
(you get an expose event from X when this happens). This means that that area of the window has
been damaged (either by the window being shown for the first time or a window that was on top
being moved out of the way, or resized so more of your window shows through, or has been
destroyed or unmapped) and needs to be redrawn. When you get an expose event you simply tell
Evas about this event, and that’s all you ever have to do. This is the only time you should need this
function call at all since moving objects or changing things in the Evas canvas will internally trigger
areas to be marked as dirty and be redrawn anyway.

To do this, all you need to do is call this function:

evas_updat e_r ect (evas, x, y, wi dt h, hei ght) ;

How Evas Renders

Evas minimises the amount to render whenever possible. As long as you don’t force it to do
rendering that it doesn’t have to (i.e. uselessly call the evas_update_rect() call when you haven’t
gotten an expose, or call evas_render() or evas_render_updates() all the time whenever you make
any changes at all to an Evas), Evas will keep rendering to a bare minimum for you, and still retain
display quality and rendering speed. Remember to only call Evas’s render calls when you program

Evas Documentation Page 28

Width

Height

Y

X

Viewport

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

goes IDLE, or you ABSOLUTELY NEED a rendering pass done − i.e. no more events to process
and no state to change. Doing otherwise will impact performance badly.

Remember evas_render() does not return anything. If there is anything to draw it will draw what is
needed, and then return. If there is nothing to be done it will return immediately.
evas_render_updates() returns an Imlib_Updates data list that you can process with Imlib2 calls to
find out what rectangles in the canvas Evas actually rendered to. Evas will return NULL if nothing
was rendered. If you use this call it is your responsibility to free the updates when you are done
processing them, otherwise they will keep being generated every render call, and thus memory will
leak.

Also make use of obscure regions. Evas allows you to define regions of your Evas canvas that are
COMPLETELY obscured by other windows (or obstacles) so the rendering output will never be
seen.

You can clear the list of obscure rectangles by calling evas_clear_obscured_rects(). When these
obscuring objects appear or go away or change it is a good idea to clear the list and then call
evas_add_obscured_rect() to add in all the rectangles of objects that completely obscure Evas.
Evas will use this information to reduce the amount of rendering it has to do and not render to the
sections of the canvas completely obscured by obstacles. Remember that the list is persistent
between renderings and thus you need to change it whenever the obstacles change.

The Rendering Engines

Evas provides you with several output targets for an Evas canvas. Once a rendering engine is set, it
cannot be changed. You can select how Evas is to render to the display target by selecting the
render method. Currently Evas supports a Software Rendering engine (the default) that uses Imlib2,
an X11 primitives engine that uses X primitives for all the drawing − such as pixmaps, lines,
rectangles etc., an OpenGL hardware accelerated engine and an Imlib2 image target engine, so you
can render to an Imlib2 Image object in order to re−use as an image or save to disk etc.

Each rendering engine has a personality of its own, and at a later date more engines will be added
to provide different targets for the canvas output (for example a postscript or pdf engine would
certainly be feasible).

Evas Documentation Page 29

Obscuring Rectangle

Obscuring
Rectangle

Obscuring
Rectangle

Evas Canvas Window

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Here are the rendering engines available and some of their properties, limitations and benefits.

RENDER_METHOD_ALPHA_SOFTWARE:

This is the default rendering engine. It uses the CPU to do all its work and tries to minimise the
amount the CPU has to do wherever it can. It can render to ANY X drawable and is ALWAYS
available. It can use any colormap and any visual your X server has. It works locally and over a
network connection to X and alpha blends, as well has having, in general, the highest quality output.
Unlike software rendering in OpenGL (Mesa), software rendering in Evas is actually fast and usable,
and thus should not be discounted as a possibility. If you do any development this should be the
engine you use by default during development for testing and viewing of the output.

RENDER_METHOD_BASIC_HARDWARE:

This engine generates pixmaps and pixmap masks where needed for images and text, and
otherwise uses raw X calls to do the rendering of objects in the canvas. This engine is dependant on
how well your X Server’s 2D calls are accelerated, and how good your graphics card’s 2D hardware
is. Pixmaps still have to be generated from the image data by the CPU, except short−cuts are taken
to minimise the CPU usage even further for doing this, by disabling dithering for depths higher than
8 bit colour, and completely avoiding doing any alpha blending or dithering of alpha masks (due to
massive slowdowns using complex masks in X). This engine gets you speed on really slow and old
hardware & X Servers, but at the expense of quality. This engine can render to any X drawable
using any colormap, and any visual, locally or across a network to X.

RENDER_METHOD_3D_HARDWARE:

This engine uses OpenGL (if Evas found OpenGL on compilation − otherwise Evas will fall back to
RENDER_METHOD_ALPHA_SOFTWARE silently for you, to ensure it still renders something). If
your OpenGL implementation is not fully accelerated, your 3D hardware is limited or such you may
see strange effects or even slower performance than software rendering. It should be noted that the
engine makes a lot of use of RGBA textures in OpenGL and thus if your OpenGL implementation or
hardware don’t support these well, you will have massive performance issues. It should also be
noted that the vast majority of OpenGL drivers are incomplete, buggy or even completely unstable.
Just because your favourite 3D game works under OpenGL does NOT mean Evas will. Evas uses
features of OpenGL that games do not and uses them differently. You may even find your system
hangs or completely crashes due to some of these bugs. This is system, hardware and driver
dependant and may vary over time and with versions of the drivers and what else you are running at
the time. This rendering engine is limited to what visuals and colormaps it can use. It will only work
in true colour modes (i.e. 15 bit and up generally), and you MUST use the visual and colormap
evas_get_optimal_visual() and evas_get_optimal_colormap() return (Note − these won’t be valid
until you set the rendering method with evas_set_output_method()). This engine can ONLY render
to a window. It cannot render to pixmaps. It will not work over a network either. You may wish to
stick to using evas_new_all() as a convenience function that creates the window for Evas with the
right visual and colormap for you.

RENDER_METHOD_ALPHA_HARDWARE:

This engine currently is not implemented and does nothing. Do not use it.

RENDER_METHOD_IMAGE:

This rendering engine does not use any display, drawable, window, colormap, visual etc.
information. You set the target output using evas_set_output_image(). When using this rendering
engine Evas will render updates to the target image set. Remember that sections of the canvas that
have transparency and no solid object at all in that area will be transparent during the merge
operation onto the destination image. That means the destination will, if it is already transparent,
inherit this transparency, or if the destination already contains solid image information, will have the

Evas Documentation Page 30

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

updated canvas areas blended on top of the destination. This engine is useful for when you want to
save the output of the canvas to a file − such as a JPEG, PNG, TIFF or other such format file using
Imlib2’s routines. It is also useful if you need to generate pixmaps and pixmap masks from canvas
contents for some other reason.

Event Handling within Evas

Evas provides a convenient event and callback system that keeps it separated from the output
device, allowing the program using Evas to control what events are received by the Evas canvas
and thus how Evas will react to these events.

The functions the program will have to use to pass events into the Evas canvas are
evas_event_button_down(), evas_event_button_up(), evas_event_move(), evas_event_enter() and
evas_event_leave(). These functions effectively input raw input device events into the canvas and
let it process them. If you are passing events into a canvas at all (which you will need to do if you
wish to use the callback system), you will need to use all of them, and not just a selection. IF you
pass button down events in Evas expects button up events to come in at some stage, and if they
don’t, events won’t be processed as expected.

Evas supports a single pointer device with up to 32 buttons (numbered 1 to 32). The semantics of
how events are processed is similar to that of X. When the first mouse button is pressed on an
object, and no buttons are currently down, the pointer is logically "grabbed" to that object. This
means no enter or leave events will be processed until either the button is ungrabbed with
evas_pointer_ungrab(), or until all mouse buttons are raised and none are down. At this point if the
pointer has left the object a leave event is generated, and any new enter events on other objects are
also generated. All motion events whilst the pointer is logically grabbed to that object are reported as
callbacks on that object, even if the motion happens outside the object. All callbacks for events are
handled synchronously. That means every time an event is inputted into Evas with one of the above
event calls, the call does not return until all callbacks triggered as a result of this input event have
been called and have returned.

The programmer can set callbacks on objects to be triggered by events. The functions
evas_callback_add() and evas_callback_del() control these callbacks. When the callback is called
the appropriate parameters to the callback are filed in. If you have a MOVE callback, the button
parameter is unused, for example. The same applies with ENTER and LEAVE callbacks. The x and
y parameters to the callback are filled in with the output pixel−space co−ordinates the pointer is
currently at. The program can use evas_screen_x_to_world() and evas_screen_y_to_world() to
translate the screen co−ordinates to world co−ordinates if it prefers to have the values in canvas unit
space than output pixel space. The object and evas parameters are filled in with the evas an object
handles of the object the event occured in and which Evas canvas that object is in.

In addition to the callbacks for pointer events on objects there is an added callback for when an
object is freed (destroyed). This allows the program to free the memory of any data pointers it may
have attached to that object when it is destroyed.

List Handling

Evas provides a convenient set of linked list handling functions. These functions all abstract a list
(which is an optimised doubly−linked list), to allow easy manipulation of the list and its members.
You may use these functions for anything you deem fit, and Evas provides these for its own internal
use as well as for the use of being able to return lists of data to the program calling the Evas
routines.

Some quick hints as to handling lists. To walk a list from beginning to end, a convenient way is to
use a for loop:

Evas Documentation Page 31

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Li st l , l i st ;
f or (l = l i st ; l ; l = l −>next)
 {
 voi d * el ement ;
 el ement = l −>dat a;
 / * . . . pr ocess t he el ement her e . . . * /
 }

You should remember that removing or adding elements to a list whilst walking it is dangerous since
it modifies the data you are currently inspecting, and thus will probably lead to bugs, infinite loops or
strangely truncated lists.

Caveats, Limitations etc.

There are some "Caveats" to use Evas. It has some limitations that are there mainly due to them
being impractical to work around, others being the result of a design decision for one reason or
another, and some being there because a better way wasn’t known of at the time.

Size Limit:

Evas has an absolute maximum output size of 8192x8192 pixels for the output. Even this is
impractical as to just have 1 buffer to render this in the first stage rendering for the software engine
requires 256 Mb of RAM − that means 512 Mb of RAM would be needed (you will need another 256
Mb RAM for the second stage buffer) just to render this Evas once. You should stick to "sane" sized
canvases, and if you wish to pan around a large canvas, use the viewport to do this. You will also
find that image objects have 8192x8192 size limitations for original and post−scaling output size.

Performance and Demand Loading:

Evas demand−loads image data as needed. It will not load image data off disk until it actually needs
it. Thus if an image is never displayed, and then later becomes visible, only then will the image be
loaded off disk. If the object becomes invisible again the image data will be put back into the cache
pool. Evas has an image (and font), cache just for this purpose. Keeping the cache at a reasonable
size will use UP TO that amount of memory (in bytes) for cached image data (and for the font
cache, glyph image data), in case Evas needs the image data again soon. This makes performance
excellent even for naive applications, but uses extra memory. Your program could, if it was smart,
look at system resources and set the cache size accordingly as free memory becomes available or
is used up. Setting the cache to 0 effectively causes the entire cache to be flushed and all tentatively
held data to be freed, and then will mean Evas does not cache any more data until you set it to
some value grater than 0. If you do not like this behaviour, set the cache to 0 at the start. Also note
that this cache is shared between ALL Evas canvases in the application. Setting it to zero in any
canvas sets it to zero for all canvases. Also all image data for objects, textures etc. is shared
between canvases in the same application, so it is relatively inexpensive to create lots of canvases
that have the same objects with the same image sources since the data is shared, which is the bulk
of the resources used.

Background:

Evas has NO background. If you create objects and have nothing behind all your objects (such as a
tiled image object or a large opaque rectangle or polygon), your objects will be rendered on top of
undefined contents − likely random memory garble or old framebuffer contents. You need to create
some object (be that a rectangle, image or anything) that will fill the canvas in the areas you expect
transparency to exist in objects, otherwise you will see nasty trails and artefacts.

Silent Errors:

Evas Documentation Page 32

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas is very robust. It will let you almost get away with murder. You can pass in NULL canvas and
object handles and Evas will simply ignore them and march on and do nothing. If you tell Evas to
make image objects from files that don’t exist, Evas will gladly make the object but it will never
render it. You need to check in on this kind of error using evas_get_image_load_error() if you care
what happened to your image objects and their image data. As for other errors such as querying the
string contents of an image object, Evas will try and return the most sensible values it can instead of
just erroring out, in an attempt to make sure your application somehow marches on. Be careful of
what properties you set on what objects, and what queries you call on which objects, as if they are
returning what seems silly values (like a font size of 0 or a font name with a string pointer of NULL
etc.), you may be querying the wrong object. The programmer needs to be careful whilst
programming and be aware of this and "do the right thing" by not doing things to objects that cannot
have those things done to them. Evas simply tries to be as robust as it can if such mistakes are
made, and not fall over itself, but march on regardless.

Co−ordinates:

Remember Evas co−ordinate space and screen co−ordinate space may not always match. Make
use of the evas_world_x_to_screen(), evas_world_y_to_screen(), evas_screen_x_to_world() and
evas_screen_y_to_world() functions that will translate world and screen co−ordinates for you as
needed depending if the canvas does or does not have a 1:1 world to screen co−ordinate ratio. Also
note that if the output width to height ratio is not the same as the viewport width to height ratio you
may get odd effects with text objects. Keep the ratios the same.

Layers:

Don’t overuse layers for keeping objects above or below each other − you can always raise and
lower objects and stack them above or below each other. Using too many layers just adds lots of
overhead. Consider keeping the number fo layers to a few dozen at most, but then again − your
mileage may vary.

Update Rectangles:

Don’t call evas_update_rect() just because you change or move an object. Evas will figure this out
itself. Call this only when you get an expose event for that area of the canvas window and/or that
area of the canvas window is damaged and needs re−rendering. Also note that calling this simply
queues a draw that Evas later optimises and uses ONLY when you call evas_render() or
evas_render_updates().

Evas Documentation Page 33

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

API Reference

This section describes all the Evas functions, what they return and what they do. If you are new to
Evas it is a good idea to read through these once to familiarise yourself with the available function
calls and what they do, so you don’t get stuck not knowing how to do something for lack of knowing
the right function to call.

Evas Documentation Page 34

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas evas_new_al l (Di spl ay * di spl ay, Wi ndow par ent _wi ndow, i nt x, i nt y,
 i nt w, i nt h, Evas_Render _Met hod r ender _met hod,
 i nt col or s, i nt f ont _cache, i nt i mage_cache,
 char * f ont _di r) ;

This function should be your first port of call when using Evas. It is a convenience function
that wraps other Evas and X functions to create an Evas for you and a window with the right
visual and colormap.

Return:

It returns an initialised Evas canvas handle ready for use and display (once you have
mapped the window etc.)

Arguments:

display

This parameter is the display pointer you would get from calling X functions or wrappers
such as XOpenDisplay(). You need to pass this in to indicate which display to use to create
the window and query the colormap and visual etc.

parent_window

This is the parent window in which to create the window for Evas.

x, y

These are the x and y pixel co−ordinates in the parent window at which the top−left corner
of the window that is created will be placed.

w, h

These parameters are the width and height parameters respectively (in pixels) for the
window that Evas will create − they will also be the width and height in units of the Evas
viewport, located at 0,0.

render_method

This specifies the rendering engine to be used for this Evas. This must be one of
RENDER_METHOD_ALPHA_SOFTWARE, RENDER_METHOD_BASIC_HARDWARE,
RENDER_METHOD_3D_HARDWARE, RENDER_METHOD_ALPHA_HARDWARE or
RENDER_METHOD_IMAGE.

colors

This parameter specifies the maximum number of colours to try and allocate if the display
mode is pseudo colour (8 bit colour). Any value from 2 to 256 is valid. Evas will attempt to
allocate up to colors number of colours when the display type is like this, but not more. It
may allocate less depending on how many available colours there are currently on the
display

font_cache

This argument tells Evas how big to make its font cache (in bytes). Evas will use up to this
number of bytes for font glyph pixel data in addition to the fonts required for display, in case

Evas Documentation Page 35

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

they are required again in the future.

image_cache

This specifies to Evas how many bytes of memory are to be used to cache image data that
isn’t currently required for rendering of the visible Evas area. This works just like the font
cache, but for image pixel data.

font_dir

This specifies one directory in which Evas can find the true type font files it needs for fonts.
You can add more directories later if you want.

Evas Documentation Page 36

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas evas_new(voi d) ;

This function creates and returns a new Evas canvas that is not initialised and needs
initialisation. You will need to call evas_set_output_viewport(), evas_set_output_colors(),
evas_set_output_size(), evas_set_output_method() and possibly evas_set_output_image()
or evas_set_output() in order to make use of this Evas canvas. You will need to supply an
appropriate drawable, colormap and visual (or image) for Evas to draw to etc. You should
only do things this way if you really know what you are doing.

Return:

A valid Evas canvas handle that needs initialising.

Evas Documentation Page 37

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_f r ee(Evas e) ;

This function will free all objects in the Evas canvas passed to it, free the canvas and all
memory used by that canvas. If Evas created the window for you for this canvas with
evas_new_all(), this window will also be destroyed.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 38

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Wi ndow evas_get _wi ndow(Evas e) ;

This function will return the output window id (or drawable as the case may be − since
windows and pixmap id’s are interchangeable for the purposes of rendering to them). If no
output window id is set it returns 0.

Return:

The return value is a window (or drawable) id. If the return value is 0, no output window is
set, or the Evas passed in is NULL.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 39

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Di spl ay * evas_get _di spl ay(Evas e) ;

Returns the display pointer used for the Evas passed in.

Return:

The display pointer used for the Evas passed in. NULL is returned if no display output is set
or the Evas handle passed in is NULL.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 40

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Vi sual * evas_get _vi sual (Evas e) ;

This function returns the visual currently being used by the Evas passed in.

Return:

The return value is the currently used visual pointer by the Evas passed in. NULL is returned
if no visual is being used or the Evas handle is NULL.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 41

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Col or map evas_get _col or map(Evas e) ;

This function returns the currently used colormap that the Evas passed in is being used.

Return:

The currently used colormap by the Evas passed into the function. 0 is returned is no
colormap is set or the Evas handle passed in is NULL.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 42

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

i nt evas_get _col or s(Evas e) ;

This function returns the maximum colour allocation count for the Evas passed in as an
argument. This does not mean it is the actual number of colours allocated for use, but the
maximum number allowed to be allocated.

Return:

The return value is an integer in a range from 2 to 256 which is the maximum number of
colours to be allocated when displaying on a display of depth less than or equal to 8 bits.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 43

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

I ml i b_I mage evas_get _i mage(Evas e) ;

This function returns the currently used Imlib2 image destination image when the
RENDER_METHOD_IMAGE engine is being used.

Return:

The Imlib2 image handle that is currently being used for rendering is returned. If no image is
being used or the Evas passed in is NULL, NULL is returned as the image handle.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 44

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Render _Met hod evas_get _r ender _met hod(Evas e) ;

This function returns the currently used rendering method for the Evas passed in.

Return:

A valid rendering method. If the Evas passed in is NULL the return value is undetermined.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 45

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_updat e_r ect (Evas e, i nt x, i nt y, i nt w, i nt h) ;

This function queues an update in the output for the Evas passed in for the rectangle
defined by the x, y, w, and h co−ordinates. X and y are pixel positions from the top−left
corner of the output window for the top−left corner of the rectangle. W and h are the width
and height, respectively of the rectangle to update, in pixels.

This update is queued but not actually performed until evas_render() or
evas_render_updates() is called. You should ONLY call this function when that rectangle for
the output of the Evas has been damaged and needs re−rendering, such as an expose
event. There should be no other reason to use this call otherwise.

Arguments:

e

A valid Evas canvas handle.

x

The x pixel co−ordinate of the top−left corner of the rectangle to update.

y

The y pixel co−ordinate of the top−left corner of the rectangle to update.

w

The width of the rectangle to update in pixels. Must be greater than 0.

h

The height of the rectangle to update in pixels. Must be greater than 0.

Evas Documentation Page 46

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_add_obscur ed_r ect (Evas e, i nt x, i nt y, i nt w, i nt h) ;

This function adds a rectangle to the Evas canvas that is passed in that is FULLY obscured.
The contents of the canvas in this rectangle will never be guaranteed to be rendered. Evas
will attempt to optimise the rendering to avoid rendering in the obscured regions held in the
Evas canvas’s obscured rectangle list. Every time this function is called a new obscured
rectangle is added to the list.

The rectangles are retained in the Evas canvas until cleared.

Arguments:

e

A valid Evas canvas handle.

x

The x pixel co−ordinate of the top−left corner of the rectangle to obscure.

y

The y pixel co−ordinate of the top−left corner of the rectangle to obscure.

w

The width of the rectangle to obscure in pixels. Must be greater than 0.

h

The height of the rectangle to obscure in pixels. Must be greater than 0.

Evas Documentation Page 47

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_cl ear _obscur ed_r ect s(Evas e) ;

This function clears the list of obscured rectangles in the Evas passed in so no obscured
rectangles are left in the canvas.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 48

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

I ml i b_Updat es evas_r ender _updat es(Evas e) ;

This function flushes all changes and updates that have been queued whilst objects have
been created and destroyed in the Evas canvas, and properties of these objects have ben
changed, as well as all update rectangles that have been queued. Evas will optimise the
rendering process to minimise the work required to display the output.

Return:

An Imlib2 updates list that you can process with Imlib2 updates processing functions. If
nothing is rendered, NULL is returned. You must remember to free this updates list when
you are done processing it. NULL will also be returned if the Evas handle passed in is NULL.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 49

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_r ender (Evas e) ;

This function flushes all changes and updates that have been queued whilst objects have
been created and destroyed in the Evas canvas, and properties of these objects have ben
changed, as well as all update rectangles that have been queued. Evas will optimise the
rendering process to minimise the work required to display the output.

Unlike evas_render_updates() this function does not return anything.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 50

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Vi sual * evas_get _opt i mal _vi sual (Evas e, Di spl ay * di sp) ;

This function returns the optimal visual to use for the destination window for Evas output if
used on the specified display. It is NOT valid to call this before evas_set_render_method()
has been called. If you use the RENDER_METHOD_ALPHA_SOFTWARE rendering
engine, it can deal with any visual you give it, but it will have a preference for a visual of a
higher depth for multiple depth displays. For example, your server has both 8 and 24 bit
visuals (8 bit overlay) and the most common configuration for this kind of display is to have
the 8 bit visual be the default to allow legacy software that is not able to cope with depths of
greater than 8 bit to run. This means though that quality suffers and thus the optimal visual
this function returns would be the 24 bit visual.

For some rendering engines (such as RENDER_METHOD_3D_HARDWARE), you can only
use the visual this routine returns for the output window, as it will not work otherwise.

Return:

The visual the program should use for the output window if it is taking the option of creating
the window itself, if it is to have a guarantee of Evas working at all or of having optimal
display quality and speed.

Arguments:

e

A valid Evas canvas handle.

disp

The X display that the program intends to use this Evas on.

Evas Documentation Page 51

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Col or map evas_get _opt i mal _col or map(Evas e, Di spl ay * di sp) ;

This function returns the optimal colormap to use for the destination window for Evas output
if used on the specified display. It is NOT valid to call this before evas_set_render_method()
has been called. If you use the RENDER_METHOD_ALPHA_SOFTWARE rendering
engine, it can deal with any colormap you give it, but it will have a preference for a visual of
a higher depth for multiple depth displays. For example, your server has both 8 and 24 bit
visuals (8 bit overlay) and the most common configuration for this kind of display is to have
the 8 bit visual be the default to allow legacy software that is not able to cope with depths of
greater than 8 bit to run. This means though that quality suffers and thus the optimal
colormap this function returns would be the 24 bit colormap.

For some rendering engines (such as RENDER_METHOD_3D_HARDWARE), you can only
use the colormap this routine returns for the output window, as it will not work otherwise.

Return:

The colormap the program should use for the output window if it is taking the option of
creating the window itself, if it is to have a guarantee of Evas working at all or of having
optimal display quality and speed.

Arguments:

e

A valid Evas canvas handle.

disp

The X display that the program intends to use this Evas on.

Evas Documentation Page 52

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_get _dr awabl e_si ze(Evas e, i nt * w, i nt * h) ;

This function returns the currently set width and height in pixels of the output window,
drawable or image into the integers pointed to by w and h respectively. If the Evas is NULL,
the values written into the integers pointed to will be 0.

Arguments:

e

A valid Evas canvas handle.

w

A valid pointer to an integer to be written to to store the current Evas output width in pixels.
If the pointer is NULL, no width will be output.

h

A valid pointer to an integer to be written to to store the current Evas output height in pixels.
If the pointer is NULL, no height will be output.

Evas Documentation Page 53

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_get _vi ewpor t (Evas e, doubl e * x, doubl e * y,
 doubl e * w, doubl e * h) ;

This function returns the location and size of the viewport within the Evas canvas co−
ordinate space that Evas is currently looking at. If any parameter pointer is NULL that
parameter is not recorded in any integer.

Arguments:

e

A valid Evas canvas handle.

x

A pointer to a double that after the call will contain the x co−ordinate of the top−left corner of
the viewport in the Evas canvas space. If it is NULL this parameter will not be recorded.

y

A pointer to a double that after the call will contain the y co−ordinate of the top−left corner of
the viewport in the Evas canvas space. If it is NULL this parameter will not be recorded.

w

A pointer to a double that after the call will contain the width of the viewport in the Evas
canvas space. If it is NULL this parameter will not be recorded.

h

A pointer to a double that after the call will contain the height of the viewport in the Evas
canvas space. If it is NULL this parameter will not be recorded.

Evas Documentation Page 54

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _out put (Evas e, Di spl ay * di sp, Dr awabl e d,
 Vi sual * v, Col or map c) ;

This function sets the X output characteristics of the Evas (if you didn’t create it with
evas_new_all() or if you change the destination drawable). You need to use this routine for
all rendering engines except the RENDER_METHOD_IMAGE engine. Evas cannot sensibly
render with any of the engines except this one, until this routine has been called. Note that
evas_new_all() calls this routine for you.

Arguments:

e

A valid Evas canvas handle.

disp

A valid X display pointer.

d

A valid drawable (either window or pixmap − but see the caveats section as to the limitations
dependant on the engine being used)

v

A valid visual pointer. It is suggested this should be the visual returned by
evas_get_optimal_visual() that you call after you call evas_set_render_method().

c

A valid colormap. It is suggested this should be the colormap returned by
evas_get_optimal_colormap() that you call after you call evas_set_render_method().

Evas Documentation Page 55

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _out put _i mage(Evas e, I ml i b_I mage i mage) ;

This call is analogous to evas_set_output() in that it tells evas where to direct the rendering
output, but in this case it is used only for the RENDER_METHOD_IMAGE rendering engine
and defines the Imlib2 image to be used as the output for rendering. If you use this
rendering engine you must call this routine to specify where evas is to render to, otherwise
nothing will be rendered. You should call this after calling evas_set_output_method(). You
should not call evas_render or evas_render_updates or create any objects in the Evas
canvas until you have called this function, if the output engine is
RENDER_METHOD_IMAGE. This has no function if the render method is not
RENDER_METHOD_IMAGE.

Arguments:

e

A valid Evas canvas handle.

image

A valid Imlib2 image handle that will be used for rendering output.

Evas Documentation Page 56

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _out put _col or s(Evas e, i nt col or s) ;

This function sets the maximum number of colours that will be allocated in a pseudo colour
display (8bit or less). The default value for an Evas canvas is 216 colours (6 elements per
red, green and blue channel). This will determine only the upper limit. Evas may not be able
to allocate enough colours and will then fall back to smaller colour cubes automatically. You
should set this before you call any rendering functions on this Evas if you want the number
of colours allocated to be anything except the default.

Arguments:

e

A valid Evas canvas handle.

colors

An integer value between 2 and 256 (inclusive) that defines the upper limit on the number of
colours that will be allocated if Evas needs to allocate colours.

Evas Documentation Page 57

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _out put _si ze(Evas e, i nt w, i nt h) ;

This routine will tell Evas the size of its output drawable or image in pixels. You must call
this before you call any rendering functions and the width and height (w and h) must be the
actual size of the drawable as much rendering depends on this being correct.

Arguments:

e

A valid Evas canvas handle.

w

The width of the output drawable or image in pixels. Valid values are between 1 and 8192.

h

The height of the output drawable or image in pixels. Valid values are between 1 and 8192.

Evas Documentation Page 58

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _out put _vi ewpor t (Evas e, doubl e x, doubl e y,
 doubl e w, doubl e h) ;

This function is used to tell Evas what geometry the output viewport has. By default when
you first create an Evas canvas, the viewport geometry is at 0,0 for its top−left corner and its
width and height in units is the same as the output canvas size in pixels. Thus we have a 1
to 1 canvas co−ordinate space to pixel space ratio by default. You can change its size and
location whenever you want. This will result in effectively being able to zoom into or scroll
around the canvas.

Arguments:

e

A valid Evas canvas handle.

x

The top−left x co−ordinate in canvas units for the box that defines the viewport region.

y

The top−left y co−ordinate in canvas units for the box that defines the viewport region.

w

The width of the viewport in canvas units (must be greater than 0).

h

The height of the viewport in canvas units (must be greater than 0).

Evas Documentation Page 59

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _out put _met hod(Evas e, Evas_Render _Met hod met hod) ;

This routine sets the rendering engine to be used by an Evas canvas. You can only call this
once on an Evas canvas as once it’s set, it cannot be changed. There are some technical
reasons for this − some of which are constraints of rendering engines themselves, and
some being easier canvas management in not allowing this.

Arguments:

e

A valid Evas canvas handle.

method

The rendering method to be used for this Evas canvas. It must only be one of
RENDER_METHOD_BASIC_HARDWARE, RENDER_METHOD_3D_HARDWARE,
RENDER_METHOD_ALPHA_HARDWARE and RENDER_METHOD_IMAGE.

Evas Documentation Page 60

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _scal e_smoot hness(Evas e, i nt smoot h) ;

This function enables or disables "smooth scaling" when images get scaled in an Evas
canvas. If "smooth scaling" is set to 1, image data us super sampled when scaling an image
down, and interpolated when scaling up. This results in smoother images and better image
quality when scaling images. By default smooth scaling is enabled. Not all rendering enignes
may implement this so it is only a hint or suggestion. Currently the software, image and 3d
hardware engines support it (with the 3d hardware engine only supporting it if the underlying
hardware does). Setting this to 0 will mean worse image quality, but will mean faster
rendering in software, if this is an issue.

Arguments:

e

A valid Evas canvas handle.

smooth

An integer with values of 0 or 1. To disable smooth scaling, use 0 as the value, otherwise
use 1 to enable it (which is the default).

Evas Documentation Page 61

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _cl i p(Evas e, Evas_Obj ect o, Evas_Obj ect cl i p) ;

Calling this routine sets the "clip object" for another object. A clip object clips and modulates
all objects that it clips. This means that the objects clipped by the clip object will only be
rendered within the space the clip object occupies − just like a clip mask. In addition the
colour of the clipped objects is modulated by the colour of the clip object. That means if the
clip object is CO and the object being clipped is O, the output colour is:

output_red = CO.red x O.red / 255

output_green = CO.green x O.green / 255

output_blue = CO.blue x O.blue / 255

output_alpha = CO.alpha x O.alpha / 255

Currently the only objects allowed to be used as a clip object are rectangle objects. Using
any other object as a clip object has undefined results at this stage.

Clipping also works recursively. That means you can clip a clip object and the output of the
objects clipped by the clip object that is now clipped will be the intersection of the 2 clip
objects. You can keep clipping infinitely this way, BUT do NOT create clip loops − that is a
clip object clips another that clips another than clips the first object. This will have bad
results, so avoid this.

You can set the clip object for the object even if it already has one and the new clip object
will apply instead. You do not need to un set the clip first.

Arguments:

e

A valid Evas canvas handle.

o

The object that will be clipped and modulated.

clip

The object that will clip and modulate the object o as described above.

Evas Documentation Page 62

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_unset _cl i p(Evas e, Evas_Obj ect o) ;

This routine disables clipping for the object specified. After this the object will no longer be
clipped by any clip object and will be displayed as if it were never clipped in the first place.

Arguments:

e

A valid Evas canvas handle.

o

The object to remove the clipping from.

Evas Documentation Page 63

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Obj ect evas_get _cl i p_obj ect (Evas e, Evas_Obj ect o) ;

This routine will return the object that clips the specified object. If no object clips this object,
NULL will be returned.

Return:

A valid Evas object handle that is the object that is currently clipping the object specified in
the arguments. If no object is currently clipping the nominated object, NULL is returned

Arguments:

e

A valid Evas canvas handle.

o

The object you wish to query to find its clipping object.

Evas Documentation Page 64

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Li st evas_get _cl i p_l i st (Evas e, Evas_Obj ect o) ;

This function returns a list of objects clipped by the object specified in the arguments

Return:

An Evas list structure that contains the Evas object handles as data elements. This list is
only valid as long as no objects that this object clips are deleted or removed from being
clipped from this object or no objects are added to the set of objects clipped by this object. If
no objects are clipped by this object NULL is returned.

Arguments:

e

A valid Evas canvas handle.

o

The object that you wish to get the list of objects it clips from (if it clips any).

Evas Documentation Page 65

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_del _obj ect (Evas e, Evas_Obj ect o) ;

This function deletes an object from the Evas canvas. This will mean the object dissapears,
and any objects it clips will no longer be clipped by it and will this appear as if they were
normally drawn.h

Arguments:

e

A valid Evas canvas handle.

o

The object to be deleted.

Evas Documentation Page 66

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Obj ect evas_add_i mage_f r om_f i l e(Evas e, char * f i l e) ;

This function adds an image object to the canvas. The image data is retrieved from the file
specified. If the file does not exist, or the file is not readable, or it is in a format Evas cannot
read and decode, then the image object is still created, but it is blank, and nothing is
rendered. You can find out if there was an error in loading the image by using
evas_get_image_load_error() to return an Imlib2 error type. The width and height of an
image that failed to load will also be 0 x 0. The default size of the image object in Evas
canvas units is the size of the image file in pixels, and the default location is at 0,0 and the
default fill parameters are 0,0 and with a width and height of the original image size in pixels.

Return:

A valid Evas object handle of the newly created object. You will still need to show the object,
move it, resize it etc. As desired to make sure it is usefully displayed.

Arguments:

e

A valid Evas canvas handle.

file

A pointer to an array of characters that is 0−byte terminated (a normal C string) that is the
path to a file to be used to retrieve the image data from. You may also use this file path as a
virtual path. For example − you wish to load an image from an Edb database file. You would
use the same format Imlib2 does, that is "/path/to/file.db:/key_in.database" where the format
is "filename:key", where the key is the string key in the Edb database where the image was
stored (using Imlib2 to store it).

Evas Documentation Page 67

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Obj ect evas_add_i mage_f r om_dat a(Evas e, voi d * dat a,
 Evas_I mage_For mat f or mat ,
 i nt w, i nt h) ;

This function is currently not implemented.

Evas Documentation Page 68

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Obj ect evas_add_t ext (Evas e, char * f ont , i nt s i ze, char * t ext) ;

This function adds a text string object to the Evas canvas specified. The object by default is
at 0,0 with a default colour of 0,0,0,0. You still need to move the object where you want it
and to show it etc.

Return:

A valid Evas object handle.

Arguments:

e

A valid Evas canvas handle.

font

A font name used to specify the font to use.

size

The font size in Evas canvas units (integer sizes only).

text

A pointer to C−string (0 byte terminated array of chars) array that is used to contain the text
string to use.

Evas Documentation Page 69

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Obj ect evas_add_r ect angl e(Evas e) ;

This function creates a rectangle object in the specified Evas canvas. The default colour is
0,0,0,0 and default location is 0,0 with a default size of 1 x 1 units in size. The program still
needs to show, move, resize, set the colour etc. of the object.

Return:

A valid Evas object handle.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 70

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Obj ect evas_add_l i ne(Evas e) ;

This function adds a line object to the specified Evas canvas with a default set of co−
ordinates 0,0 and 0,0 for the start and end points, and a default colour of 0,0,0,0. The
application still needs to set the start and end point co−ordinates, show and set the colour of
the object.

Return:

A valid Evas object handle.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 71

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Obj ect evas_add_gr adi ent _box(Evas e) ;

This routine adds a gradient box object to an Evas canvas. By default there is no gradient
set and it has an angle of 0 degrees (from 12 noon, clockwise), and at location 0,0 with a
size of 1 x 1 units. You need to set a gradient on this object for it to render anything useful,
and need to move, resize, show etc. the object.

Return:

A valid Evas object handle.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 72

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Obj ect evas_add_pol y(Evas e) ;

This routine adds a polygon object to the Evas canvas specified. You still need to set the
polygon points to have anything rendered, as well as the colour, as well as show, move etc.
the object.

Return:

A valid Evas object handle.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 73

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _i mage_f i l e(Evas e, Evas_Obj ect o, char * f i l e) ;

This routine changed the image file used for an image object. If the object passed in is not
an image object, nothing happens. In setting an image file successfully, the properties (size,
image fill) are set as if it were a newly created image object. You can use
evas_get_image_load_error() to see if the file exists and can be loaded.

Arguments:

e

A valid Evas canvas handle.

o

A valid Evas object handle that is the object you wish to change the image file of. It must be
an image object otherwise nothing will happen.

file

The file path to the image file to be used (the same as would be used to create a new image
object).

Evas Documentation Page 74

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _i mage_dat a(Evas e, Evas_Obj ect o, voi d * dat a,
 Evas_I mage_For mat f or mat , i nt w, i nt h) ;

This function is currently not implemented.

Evas Documentation Page 75

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _i mage_f i l l (Evas e, Evas_Obj ect o, doubl e x, doubl e y,
 doubl e w, doubl e h) ;

This function sets how to fill an image object’s space with the image data. The fill specifies
at what unit co−ordinates within the image object, relative to its top left corner, the top−left
corner of the image object is to start at, and what size this image data should be scaled to
for output, in canvas units. If the object specified is not an image object, nothing happens.

The image object is tile filled with the image data so the whole area the object covers is filled
with the image data in a tiled (repeated) fashion.

Arguments:

e

A valid Evas canvas handle.

o

The Evas object handle to modify the image fill of.

x

The x co−ordinate of the top left origin of the image data relative to the top left corner of the
image object where the tiled fill is to start.

y

The y co−ordinate of the top left origin of the image data relative to the top left corner of the
image object where the tiled fill is to start.

w

The width of the output image data that is to be tiled, in canvas units.

h

The height of the output image data that is to be tiled, in canvas units.

Evas Documentation Page 76

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _i mage_bor der (Evas e, Evas_Obj ect o,
 i nt l , i nt r , i nt t , i nt b) ;

This function sets the image border scaling parameters of an image object specified as an
argument. These scaling parameters determine what original image pixels do not get scaled
on output if the output image is scaled to a size that is not that of the original (in pixels). This
is very useful for handling "bevels" in images so when scaled, only the middle scales and
the edges do not. Here is an example of an image that is 8x8 pixels in size, where we set he
left, right, top and bottom borders to 2 pixels.

This is the original image:

And here is the result of rendering when the above original image is scaled to an output of
64x32 pixels:

Notice that the middle scales (in this case smoothly because we have smooth scaling turned
on), but the edges remain as in the original, allowing for applications to easily create button
images and other complex images constructs without having to do as much themselves.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 77

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

o

The Evas object handle to modify the image border scaling properties of.

l, r, t, b

The left, right, top and bottom border scaling parameters in pixel units. The default values
for an image object are 0 for all of these parameters.

Evas Documentation Page 78

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _col or (Evas e, Evas_Obj ect o, i nt r , i nt g, i nt b, i nt a) ;

This function sets the colour value of an object. For Text objects it sets the red, green, blue
and alpha values the text is rendered with. For line objects it sets the colour of the line. For
rectangle objects it sets the colour of the rectangle. For polygon objects it sets the colour of
the polygon. For image objects it sets the value each pixel in the image is multiplied by
before composition (rendering) in the canvas.

Arguments:

e

A valid Evas canvas handle.

o

The Evas object handle to modify the image fill of.

r, g, b, a

The red, green, blue and alpha values respectively to use for the object.

Evas Documentation Page 79

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _t ext (Evas e, Evas_Obj ect o, char * t ext) ;

This function sets the text string contents of a text object to the text supplied in the
arguments. This has no effect on objects other than text objects.

Arguments:

e

A valid Evas canvas handle.

o

The Evas object handle of a text object to modify the textl of.

text

The C string (0 byte terminated array of chars) containing the ascii text to use for the text
object.

Evas Documentation Page 80

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _f ont (Evas e, Evas_Obj ect o, char * f ont , i nt s i ze) ;

This function sets the font name and size (in integer canvas units) of a text object. It affects
only text objects. The font name is the file name of a true type font in any directory in the
font path set in Evas. It is case sensitive and does not need the extension of the file (often
the file is names "font_name.ttf" and in this case the font name would be "font_n ame"). The
true type font file that is found first in the list of directories in the path that matches the name
of the font requested, is used.

Arguments:

e

A valid Evas canvas handle.

o

The Evas object handle of a text object to modify the font and size of.

font

A C string name of the font to use.

size

An integer in the range from 1 upwards for the unit size of the font. (Warning some engines
may have limitations on the largest glyph sizes internally. It is suggested to keep font sizes
so that no character exceeds an output size of 255 x 255 pixels).

Evas Documentation Page 81

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _gr adi ent (Evas e, Evas_Obj ect o, Evas_Gr adi ent gr ad) ;

This function sets the gradient to be used by an Evas gradient object. The gradient must be
a valid gradient with 2 or more colours in it and a total spacing of 1 or more across the whole
gradient. The object must be a gradient object, or nothing will happen.

Arguments:

e

A valid Evas canvas handle.

o

The Evas object handle of a gradient object to set the gradient of.

grad

A valid gradient handle to be used as the gradient for the object.

Evas Documentation Page 82

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _angl e(Evas e, Evas_Obj ect o, doubl e angl e) ;

This function sets the angle in degrees from the vertical, in a clock−wise fashion, in which
the first element of the gradient colour is to be found when drawn in a gradient object. This
function only has an affect on gradient objects, and does not do anything if the object handle
is not that of a gradient object. The angle can be any value at all.

Arguments:

e

A valid Evas canvas handle.

o

The Evas object handle of a gradient object.

angle

The angle at which one would find the first colour element in a gradient, measured in
degrees from the vertical, in a clock−wise fashion.

Evas Documentation Page 83

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _zoom_scal e(Evas e, Evas_Obj ect o, i nt scal e) ;

This function currently has no effect.

Evas Documentation Page 84

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _l i ne_xy(Evas e, Evas_Obj ect o, doubl e x1, doubl e y1,
 doubl e x2, doubl e y2) ;

This function sets the absolute co−ordinates of the end points of a line object. This function
only has an effect on line objects.

Arguments:

e

A valid Evas canvas handle.

o

The Evas object handle of a line object to modify the points of.

x1, y1

The co−ordinates, in canvas units of one end on the line.

x2, y2

The co−ordinates in canvas units of the opposite end of the line.

Evas Documentation Page 85

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _pass_event s(Evas e, Evas_Obj ect o, i nt pass_event s) ;

This function enables events to pass through the object specified. If pass_events is 1, all
events pass through the object as if it did not exist. The object becomes a purely visual
element and has no bearing on the event capture and call back system as long as
pass_events is set to 1 for this object. This is handy for using objects as mouse cursors or
purely visual indicators in a canvas that have no actual function themselves.

Arguments:

e

A valid Evas canvas handle.

o

The Evas object handle of any object you wish to make impervious to events.

pass_events

An integer of value 0 or 1, where 0 indicates that events are to be captured by an object and
their call backs called (which is the default state of an object), and 1, which indicates that
the object is to ignore all events.

Evas Documentation Page 86

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_add_poi nt (Evas e, Evas_Obj ect o, doubl e x, doubl e y) ;

Calling this routine adds a point to a polygon object. The point is specified in absolute co−
ordinates in canvas units.

Arguments:

e

A valid Evas canvas handle.

o

The Evas object handle of a polygon object.

x, y

The co−ordinates of the point to be added in canvas units.

Evas Documentation Page 87

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_cl ear _poi nt s(Evas e, Evas_Obj ect o) ;

This function clears the points list of a polygon object so there are no points, as is the
default when a polygon object is created.

Arguments:

e

A valid Evas canvas handle.

o

The Evas object handle of a polygon object.

Evas Documentation Page 88

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _f ont _cache(Evas e, i nt s i ze) ;

This function sets the size of the font cache for the engine the specified Evas canvas is
using, in bytes. This cache is used to hold font glyph data when it is actually not currently
used by any visible canvas object. This allows rapid changing between fonts and sizes
without continual need for re−loading off disk and re−rasterisation of the font glyphs. If your
application is sensitive to memory usage and can survive some performance degredation
when it may keep changing text fonts, and sizes, then you are free to use a 0 sized cache,
but it is suggested that in most circumstances it is a good idea to have a few hundred Kb of
font cache − maybe 1 or 2 Mb if you use text heavily with various fonts and sizes. You may
change the cache size at any time.

Arguments:

e

A valid Evas canvas handle.

size

The size of the memory pool in bytes to be used as cache for font glyphs that are currently
not visible.

Evas Documentation Page 89

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

i nt evas_get _f ont _cache(Evas e) ;

This function returns the size of the font cache for the engine used by the specified canvas
in bytes.

Return:

An integer equal or greater than 0, that is the number of bytes allowed to be used up as
cache for non visible fonts.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 90

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_f l ush_f ont _cache(Evas e) ;

This function flushes all fonts out of the cache that are there, so nothing is held in cache
anymore for the engine the specified canvas uses.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 91

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _i mage_cache(Evas e, i nt s i ze) ;

This function sets the size of the image cache to be used for the rendering engine used by
the canvas specified. The size of the cache is in bytes, and is used for the raw RGBA image
data after it is decoded from disk. This means 1 pixel uses 4 bytes of cache. For a 100 x
100 image, that means 40,000 bytes (40kb) would be required in cache for that image to be
retained in cache. This cache is only used for images that are not visible in the canvas, but
will affect performance if images change visibility often.

Arguments:

e

A valid Evas canvas handle.

size

The size of the memory pool in bytes to be used as cache for image data that is currently
not visible.

Evas Documentation Page 92

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

i nt evas_get _i mage_cache(Evas e) ;

This function returns the size of the image cache for the engine used by the specified
canvas in bytes.

Return:

An integer equal or greater than 0, that is the number of bytes allowed to be used up as
cache for non visible images.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 93

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_f l ush_i mage_cache(Evas e) ;

This function flushes all images out of the cache that are there, so nothing is held in cache
anymore for the engine the specified canvas uses.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 94

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_f ont _add_pat h(Evas e, char * pat h) ;

This function adds the directory specified by the string path to the end of the list of
directories scanned by the engine the canvas specified used to find fonts. If the path is
already in the list for that engine it is removed and now added to the end.

Arguments:

e

A valid Evas canvas handle.

path

A C string (0 byte terminated) string that is a path to a directory where fonts can be found
that will be appended to the end fo the current list for the engine the canvas uses.

Evas Documentation Page 95

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_f ont _del _pat h(Evas e, char * pat h) ;

This function deletes the specified path from the list of directories scanned for fonts by the
engine used in the canvas specified.

Arguments:

e

A valid Evas canvas handle.

path

A C string (0 byte terminated) string that is a path to a directory where fonts can be found
that will be appended to the end fo the current list for the engine the canvas uses. If this
path is not in the list of directories used and is not an exact match, nothing is done.

Evas Documentation Page 96

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _l ayer (Evas e, Evas_Obj ect o, i nt l) ;

This function sets the stacking layer used for the specified object to the numeric layer
specified. The default layer for all objects is layer 0. Objects in layers with a greater number
are stacked above objects in layers of lesser number − regardless if those other objects are
raised. Objects can only be raised and lowered and otherwise stacked within their layer. If
an object is intended to be stacked above objects with layer numbers greater than the object
has, it must have a layer number higher than the objects it is to be stacked above. When an
object’s layer is changed it is always stacked at the top of the object stack in the layer it is
in.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

l

The layer the object is to be stacked at the top of when this function is called. The object will
remain in that layer until its layer number has changed. The default layer number is 0. Any
integer can be used as a layer number.

Evas Documentation Page 97

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

i nt evas_get _l ayer (Evas e, Evas_Obj ect o) ;

This function returns the current layer number of the object specified.

Return:

An integer that is the layer number of the object.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

Evas Documentation Page 98

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_set _l ayer _st or e(Evas e, i nt l , i nt st or e) ;

This function currently does nothing.

Evas Documentation Page 99

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Gr adi ent evas_gr adi ent _new(voi d) ;

This function creates a new gradient, that is completely empty and returns a handle to it.

Return:

A valid gradient handle to an empty gradient.

Evas Documentation Page 100

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_gr adi ent _f r ee(Evas_Gr adi ent gr ad) ;

This function frees a gradient and all colours in it.

Arguments:

grad

A valid gradient handle.

Evas Documentation Page 101

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_gr adi ent _add_col or (Evas_Gr adi ent gr ad, i nt r , i nt g,
 i nt b, i nt a, i nt di st) ;

This function adds a colour to the specified gradient at a specified "distance" from the colour
that was previously added. The first colour added ignores the distance. The distances
between colours in a gradient add up to a total distance (except for the first colour) that
defines a length for the gradient. This gradient length is stretched across the space it is
meant to fill.

Arguments:

grad

A valid gradient handle that is to have the colour added to.

r, g, b, a

The red, green, blue and alpha values of the colour to add (respectively) to the gradient.

dist

A distance that specifies how far away the colour is to be placed from the previously added
colour.

Evas Documentation Page 102

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_r ai se(Evas e, Evas_Obj ect o) ;

This function raises the specified object to the top of the stack of objects within its layer.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

Evas Documentation Page 103

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_l ower (Evas e, Evas_Obj ect o) ;

This function lowers the specified object to the bottom of the stack of objects within its layer.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

Evas Documentation Page 104

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_st ack_above(Evas e, Evas_Obj ect o, Evas_Obj ect above) ;

This function raises the specified object above the above object specified object in the stack.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

above

A valid object handle in the canvas specified that the object o is to be stacked immediately
above.

Evas Documentation Page 105

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_st ack_bel ow(Evas e, Evas_Obj ect o, Evas_Obj ect bel ow) ;

This function lowers the specified object below the below object specified object in the stack.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

above

A valid object handle in the canvas specified that the object o is to be stacked immediately
below.

Evas Documentation Page 106

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_move(Evas e, Evas_Obj ect o, doubl e x, doubl e y) ;

This function moves a specified object in the canvas world so the co−ordinates of it’s top−
left corner are at the co−ordinates specified.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

x, y

The co−ordinates, in canvas units of the top−left corner of the object to be moved.

Evas Documentation Page 107

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_r esi ze(Evas e, Evas_Obj ect o, doubl e w, doubl e h) ;

This function resizes the specified object to the size in canvas units specified as arguments.
This only works for rectangle, image and gradient objects.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

w, h

The width and height, respectively, of the new size for the object. These must be greater
than 0 units in each direction to be valid.

Evas Documentation Page 108

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_get _geomet r y(Evas e, Evas_Obj ect o, doubl e * x, doubl e * y,
 doubl e * w, doubl e * h) ;

This function returns the current geometry of the specified object. The geometry is the
bounding box that the object occupies, with the x and y co−ordinates defining the top left
corner of the bounding box that the object occupies and the width and height being its size.
If the pointer to any return parameter (x, y, w or h) is NULL that parameter is not filled in.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

x, y, w, h

Pointers to the variables that will be filled in with the object’s geometry.

Evas Documentation Page 109

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Li st evas_obj ect s_i n_r ect (Evas e, doubl e x, doubl e y,
 doubl e w, doubl e h) ;

This function returns a list of objects that intersect the rectangle in the canvas space defined
by the box co−ordinates supplied. The list of objects is from bottom to top. If there are no
objects then NULL is returned. The data member of each list element is an object handle.
The calling program must free this list with evas_list_free() when it is done with it.

Return:

A list of objects, ordered from bottom to top, with the data member being a valid object
handle of each list element, or NULL if none are found. The caller is responsible for freeing
the list later.

Arguments:

e

A valid Evas canvas handle.

x, y, w, h

The co−ordinates of the box being queried for its contents of objects.

Evas Documentation Page 110

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Li st evas_obj ect s_at _posi t i on(Evas e, doubl e x, doubl e y) ;

This function returns a list of objects which intersect the co−ordinate specified, in the
specified canvas. The list is ordered from bottom most object to top most object, with the
data element being an object handle. If no objects intersect this point, NULL is returned. The
caller needs to use evas_list_free() to free the list when they are done with it.

Return:

A list of objects, ordered from bottom to top, with the data member being a valid object
handle of each list element, or NULL if none are found. The caller is responsible for freeing
the list later.

Arguments:

e

A valid Evas canvas handle.

x, y

A point in canvas co−ordinate space that you wish to have a list of objects returned that
intersect that point in the canvas.

Evas Documentation Page 111

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Obj ect evas_obj ect _i n_r ect (Evas e, doubl e x, doubl e y,
 doubl e w, doubl e h) ;

This function returns the top most object that intersects the rectangle described in the
specified canvas. If no object intersects this rectangle, NULL is returned.

Return:

A valid object handle of the top most object that intersects this rectangle, if there is one, or
NULL if none is found.

Arguments:

e

A valid Evas canvas handle.

x, y, w, h

Parameters describing a rectangle in the canvas with x and y describing its top−left corner,
and w and h denoting its width and height (where these are greater than 0).

Evas Documentation Page 112

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Obj ect evas_obj ect _at _posi t i on(Evas e, doubl e x, doubl e y) ;

This function returns the top most object that intersects the point described in the specified
canvas. If no object intersects this point, NULL is returned.

Return:

A valid object handle of the top most object that intersects this point, if there is one, or NULL
if none is found.

Arguments:

e

A valid Evas canvas handle.

x, y

A point in canvas co−ordinate space that you wish to have an object handle returned that
intersects that point in the canvas.

Evas Documentation Page 113

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Obj ect evas_obj ect _get _named(Evas e, char * name) ;

This function returns the object handle of an object whose name matches the specified
name parameter passed in. There must be an object whose name matches the name
specified to get back a valid object handle, otherwise NULL is returned. If there is more than
one object with such a name it is undefined as to which object handle will be returned.

Return:

A valid object handle of the object that has the name requested, or NULL if none exists in
the specified canvas.

Arguments:

e

A valid Evas canvas handle.

name

A C string (0 byte terminated) that contains the name being queried.

Evas Documentation Page 114

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_obj ect _set _name(Evas e, Evas_Obj ect o, char * name) ;

This function sets the name of a specified object in a canvas. It is suggested that the name
be unique to that object in that canvas as it is assumed there will be a one to one, name to
object mapping.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

name

A C string (0 byte terminated) that contains the name being set on the object. If it already
has a name it will be replaced by this new name. If name is NULL, the name o the object will
be cleared and it will have no name. Objects by default have no name. The name will be
internally duplicated so the string passed in to this function can be used as the program
sees fit.

Evas Documentation Page 115

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

char * evas_obj ect _get _name(Evas e, Evas_Obj ect o) ;

This function will return the name set on a specific object, if there is one, or NULL if there is
not.

Return:

A pointer to a C string (0 byte terminated), that is the internal string of the object name. Or
NULL if it has no name. This pointer is only valid as long as the program does not change
the object name, or destroy the object.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

Evas Documentation Page 116

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Li st evas_get _poi nt s(Evas e, Evas_Obj ect o) ;

This function returns a list of points in a polygon object. If the polygon object has no points,
or the object handle is not a polygon object, NULL is returned. Each data member in the list
is an Evas_Point handle. A point structure has 2 members, x and y.

st r uct _Evas_Poi nt
{
 doubl e x, y;
} ;
t ypedef st r uct _Evas_Poi nt * Evas_Poi nt ;

Return:

A list of point handles, or NULL if no points exist. This list is only valid as long as no points
are added to the object queried, the points of the object are not cleared, and the object is
not destroyed.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

Evas Documentation Page 117

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_show(Evas e, Evas_Obj ect o) ;

This function makes a specified object visible.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

Evas Documentation Page 118

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_hi de(Evas e, Evas_Obj ect o) ;

This function hides a specified object so that it is no longer visible.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

Evas Documentation Page 119

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

i nt evas_get _i mage_al pha(Evas e, Evas_Obj ect o) ;

This function returns if an image object has an alpha channel or not. If it does it returns 1, if
it does not have an alpha channel, it returns 0. If the object is not an image object, 0 will be
returned anyway.

Return:

An integer which is 0 or 1. 0 denotes that the object has no alpha channel, or is not an
image object, and 1 denotes that the image object has an alpha channel.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

Evas Documentation Page 120

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_get _i mage_si ze(Evas e, Evas_Obj ect o, i nt * w, i nt * h) ;

This function returns the size of an image object, in integer pixels, and places the result in
the pointers to the w and h parameters passed in.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

w, h

Pointers to integers to be filled in with the image object’s width and height respectively. If
any one of these is NULL, the parameter is not filled in.

Evas Documentation Page 121

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_get _i mage_bor der (Evas e, Evas_Obj ect o,
 i nt * l , i nt * r , i nt * t , i nt * b) ;

This routine returns the border scaling settings of an image object and places the results in
the integers pointed to. If the object is not an image object the results are undefined.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

l, r, t, b

Pointers to integers where the left, right, top and bottom (respectively) border scaling
parameters for the image object will be written. If any parameter is NULL, it will not be
written to.

Evas Documentation Page 122

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

I ml i b_Load_Er r or evas_get _i mage_l oad_er r or (Evas e, Evas_Obj ect o) ;

This function returns the error whilst trying to load an image object. If the object is not an
image object the results are undefined.

Return:

A load status/ error value. It can be one of:

IMLIB_LOAD_ERROR_NONE, IMLIB_LOAD_ERROR_FILE_DOES_NOT_EXIST,
IMLIB_LOAD_ERROR_FILE_IS_DIRECTORY,
IMLIB_LOAD_ERROR_PERMISSION_DENIED_TO_READ,
IMLIB_LOAD_ERROR_NO_LOADER_FOR_FILE_FORMAT,
IMLIB_LOAD_ERROR_PATH_TOO_LONG,
IMLIB_LOAD_ERROR_PATH_COMPONENT_NON_EXISTANT,
IMLIB_LOAD_ERROR_PATH_COMPONENT_NOT_DIRECTORY,
IMLIB_LOAD_ERROR_PATH_POINTS_OUTSIDE_ADDRESS_SPACE,
IMLIB_LOAD_ERROR_TOO_MANY_SYMBOLIC_LINKS,
IMLIB_LOAD_ERROR_OUT_OF_MEMORY,
IMLIB_LOAD_ERROR_OUT_OF_FILE_DESCRIPTORS,
IMLIB_LOAD_ERROR_PERMISSION_DENIED_TO_WRITE,
IMLIB_LOAD_ERROR_OUT_OF_DISK_SPACE, IMLIB_LOAD_ERROR_UNKNOWN

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

Evas Documentation Page 123

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

i nt evas_wor l d_x_t o_scr een(Evas e, doubl e x) ;

This function transforms a horizontal point or distance in canvas space to output pixel units.
The result depends on the ratio of the viewport size to the output pixel size.

Return:

An integer in pixel units.

Arguments:

e

A valid Evas canvas handle.

x

The value in canvas units to be transformed into output pixel units.

Evas Documentation Page 124

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

i nt evas_wor l d_y_t o_scr een(Evas e, doubl e y) ;

This function transforms a vertical point or distance in canvas space to output pixel units.
The result depends on the ratio of the viewport size to the output pixel size.

Return:

An integer in pixel units.

Arguments:

e

A valid Evas canvas handle.

y

The value in canvas units to be transformed into output pixel units.

Evas Documentation Page 125

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

doubl e evas_scr een_x_t o_wor l d(Evas e, i nt x) ;

This function transforms a horizontal point or distance in pixel space to canvas units. The
result depends on the ratio of the viewport size to the output pixel size.

Return:

An double precision value in canvas space units.

Arguments:

e

A valid Evas canvas handle.

x

The value in output pixel units to be transformed into canvas units.

Evas Documentation Page 126

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

doubl e evas_scr een_y_t o_wor l d(Evas e, i nt y) ;

This function transforms a vertical point or distance in pixel space to canvas units. The
result depends on the ratio of the viewport size to the output pixel size.

Return:

An double precision value in canvas space units.

Arguments:

e

A valid Evas canvas handle.

y

The value in output pixel units to be transformed into canvas units.

Evas Documentation Page 127

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

char * evas_get _t ext _st r i ng(Evas e, Evas_Obj ect o) ;

This function returns a pointer to the internal string of the specified object in the canvas
specified. This is only valid as long as the object is not destroyed and the text of the string
object has not been changed. NULL will be returned if the object has no text set or it is not a
text object.

Return:

A pointer to a C string (0 byte terminated) that contains the text of the object, or NULL if no
text string is set.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

Evas Documentation Page 128

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

char * evas_get _t ext _f ont (Evas e, Evas_Obj ect o) ;

This function returns the font name used by a text object. If the object is not a text object, an
empty string is returned. The font name returned is only valid so long as the object isn’t
freed or the font isn’t changed.

Return:

A pointer to a C string (0 byte terminated) that contains the font name of the object.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

Evas Documentation Page 129

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

i nt evas_get _t ext _si ze(Evas e, Evas_Obj ect o) ;

This function returns the size of the font used for the specified text object. If it is not a text
object, 0 is returned.

Return:

An integer that is the size of the font used, or 0 if the object is not a text object.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

Evas Documentation Page 130

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

doubl e evas_get _t ext _wi dt h(Evas e, Evas_Obj ect o) ;

This function returns the total width of a text object in canvas units. If the object specified is
not a text object, 0 is returned.

Return:

A double precision float value that is the width of the text object in canvas units.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

Evas Documentation Page 131

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

doubl e evas_get _t ext _hei ght (Evas e, Evas_Obj ect o) ;

This function returns the total height of a text object in canvas units. If the object specified is
not a text object, 0 is returned.

Return:

A double precision float value that is the height of the text object in canvas units.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

Evas Documentation Page 132

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

i nt evas_t ext _at _posi t i on(Evas e, Evas_Obj ect o, doubl e x, doubl e y,
 doubl e * char _x, doubl e * char _y,
 doubl e * char _w, doubl e * char _h) ;

This function returns the character index of the character in the string object that the
specified co−ordinates are over. The specified co−ordinates are relative to the top left
corner of the text object (being 0,0) and are in canvas units. The index returned is the
character in the string the co−ordinates are over, if any. If the co−ordinates are not within a
character in the text object −1 is returned instead. If the co−ordinates do intersect a
character, the co−ordinates of the bounding box of the glyph of that character, relative to the
top left corner of the text object are returned to the values pointed to by the character
metric pointers.

Return:

An integer from 0 to N − 1, where N is the number of characters in the text string. If the co−
ordinates do not lie within a character of the string object, or the object is not a string object,
−1 is returned.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

x, y

The co−ordinates in canvas units relative to the top left corner of the text object that are to
be queried for the contents of a character.

char_x, char_y, char_w, char_h

Pointers to double float values that will have the bounding box co−ordinates of the character
queried filled in, if the pointers are non NULL. If the function returns −1 the contents of the
variables pointed to will be unchanged.

Evas Documentation Page 133

Object X

Object Y

char_x
char_y

char_w
char_h

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_t ext _at (Evas e, Evas_Obj ect o, i nt i ndex,
 doubl e * char _x, doubl e * char _y,
 doubl e * char _w, doubl e * char _h) ;

This function returns the character geometry (as returned by evas_text_at_position()) of the
character index specified. If the index is invalid (with 0 being the first character, and valid
indexes going from 0 to N − 1 where N is the number of characters in the text object string
are valid values), the contents of the return geometry is unspecified. The contents of the
return geometry is also unspecified if the object is not a text object.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

index

The character index in the string being queried. This must be greater or equal to 0 and less
than the total number of characters in the text object string.

char_x, char_y, char_w, char_h

Pointers to double float values that will have the bounding box co−ordinates of the character
queried filled in, if the pointers are non NULL.

Evas Documentation Page 134

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_t ext _get _ascent _descent (Evas e, Evas_Obj ect o,
 doubl e * ascent , doubl e * descent) ;

This function returns the ascent and descent values in canvas units for the font used in the
text object specified. If the object is not a text object the values written into ascent and
descent are unspecified.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

ascent, descent

Pointers to double precision float values that will be filled in with the ascent and descent
valued of the font used in the text object. If any of these pointers is NULL, it is not filled in.

Evas Documentation Page 135

Object X

Object Y

Ascent

Descent

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_t ext _get _max_ascent _descent (Evas e, Evas_Obj ect o,
 doubl e * ascent , doubl e * descent) ;

This function operates the same way evas_text_get_ascent_descent() works, but returns
the maximum extents of the ascent and descent values in the font, not just the values the
font specifies (which may be the same or less than the ascent and descent values returned
by evas_text_get_ascent_descent()). If the object is not a text object the values written into
ascent and descent are unspecified.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

ascent, descent

Pointers to double precision float values that will be filled in with the ascent and descent
valued of the font used in the text object. If any of these pointers is NULL, it is not filled in.

Evas Documentation Page 136

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_t ext _get _advance(Evas e, Evas_Obj ect o,
 doubl e * h_advance, doubl e * v_advance) ;

This function returns the number of canvas units to advance horizontally and vertically if
more text objects are to be placed to the right or bottom of this object. If the object is not a
text object the values written to the advance values is undefined.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

h_advance, v_advance

Pointers to 2 double values that the horizontal and vertical advance values respectively will
be written to. If any of them is NULL it will not be written to.

Evas Documentation Page 137

Object X

Object Y

H_advance

V_advance

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

doubl e evas_t ext _get _i nset (Evas e, Evas_Obj ect o) ;

This function returns the inset from the left side of the text object and where the horizontal
font specified starting co−ordinate is. If the object is not a text object, 0 is returned.

Return:

A value in canvas units that is the inset between the left edge of the font object and the start
of the text.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

Evas Documentation Page 138

Object X

Object Y

Inset

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_get _col or (Evas e, Evas_Obj ect o,
 i nt * r , i nt * g, i nt * b, i nt * a) ;

This function returns the colour set on an object and writes the colour values into the
pointers passed into the function.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

r, g, b, a

Pointers to integers where the values for red, green, blue and alpha respectively will be
written.

Evas Documentation Page 139

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Obj ect evas_get _obj ect _under _mouse(Evas e) ;

This function returns a handle to the object that is currently under the mouse pointer position
that is currently held in the Evas canvas. If there is no object under the cursor position,
NULL is returned.

Return:

A valid object handle of an object under the pointer, or NULL if there is none.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 140

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_put _dat a(Evas e, Evas_Obj ect o, char * key, voi d * dat a) ;

This function attaches a pointer to specified data with a string name to an object in an Evas
canvas. If a pointer is already attached to that object with that string key, it is replaced.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

key

A C string (0 byte terminated) that contains the key string to attach the data pointer to.

data

A pointer to any data the program wishes to attach to the object.

Evas Documentation Page 141

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d * evas_get _dat a(Evas e, Evas_Obj ect o, char * key) ;

This function returns the data pointer attached to an object under the specified key. If no
data is attached, NULL is returned.

Return:

A pointer to data attached under the key to the specified object, otherwise NULL if no data is
attached.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

key

A C string (0 byte terminated) that contains the key string to be queried for the data pointer
attached.

Evas Documentation Page 142

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d * evas_r emove_dat a(Evas e, Evas_Obj ect o, char * key) ;

This function removes the data pointer attached to the specified object and returned the
pointer. If no data was attached NULL is returned.

Return:

A pointer to data attached under the key to the specified object, otherwise NULL if no data is
attached.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

key

A C string (0 byte terminated) that contains the key string to be removed for the data pointer
attached.

Evas Documentation Page 143

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_event _but t on_down(Evas e, i nt x, i nt y, i nt b) ;

This function feeds a mouse button down event into the specified canvas. The button
number can be a value from 1 to 32, and the co−ordinates are locations on the output
canvas in pixel co−ordinate space. If you are passing in button down events you MUST
pass in button up events or the event system will not work properly. Use
evas_event_button_up() to pass in button raise events into the canvas. As with all the event
functions, callbacks are synchronous and will be called if they are triggered the moment this
function is called, and it will not return until all callbacks triggered have returned.

Arguments:

e

A valid Evas canvas handle.

x, y

Pixel space co−ordinates where the mouse button was pressed down.

b

The button number that was pressed down. Can be a value from 1 to 32 only.

Evas Documentation Page 144

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_event _but t on_up(Evas e, i nt x, i nt y, i nt b) ;

This function passes a mouse button raise event to the Evas canvas specified. As with all
the event functions, callbacks are synchronous and will be called if they are triggered the
moment this function is called, and it will not return until all callbacks triggered have
returned.

Arguments:

e

A valid Evas canvas handle.

x, y

Pixel space co−ordinates where the mouse button was raised.

b

The button number that was raised. Can be a value from 1 to 32 only.

Evas Documentation Page 145

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_event _move(Evas e, i nt x, i nt y) ;

This function passes a mouse motion event to the Evas canvas specified, in output pixel
co−ordinates. This should be used if the mouse buttons are pressed or not. As with all the
event functions, callbacks are synchronous and will be called if they are triggered the
moment this function is called, and it will not return until all callbacks triggered have
returned.

Arguments:

e

A valid Evas canvas handle.

x, y

Pixel space co−ordinates where the mouse button has moved to.

Evas Documentation Page 146

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_event _ent er (Evas e) ;

This function hints to the Evas canvas that the mouse cursor has entered the canvas output
space. As with all the event functions, callbacks are synchronous and will be called if they
are triggered the moment this function is called, and it will not return until all callbacks
triggered have returned.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 147

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_event _l eave(Evas e) ;

This function hints to the Evas canvas that he mouse cursor has actually left the canvas
output space. As with all the event functions, callbacks are synchronous and will be called if
they are triggered the moment this function is called, and it will not return until all callbacks
triggered have returned.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 148

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

i nt evas_poi nt er _i n(Evas e) ;

This function returns if the mouse cursor is currently considered by the canvas to be inside
it. IT returns 1 if it is, and 0 if it is not.

Return:

It returns 1 if the pointer is considered to be in the canvas, and 0 if it is not.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 149

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_poi nt er _pos(Evas e, i nt * x, i nt * y) ;

This function returns the pointer position that the canvas considers the pointer to currently
be at. The output pixel positions are written into the pointers to the co−ordinates provided.

Arguments:

e

A valid Evas canvas handle.

x, y

Pointers to 2 integers that will be filled in with the co−ordinates of the current cursor position
in the specified Evas canvas. If any pointer is NULL it will not be filled in.

Evas Documentation Page 150

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

i nt evas_poi nt er _but t ons(Evas e) ;

This function returns a mask as an integer with the bits that are set to 1 corresponding to
the buttons that are currently pressed down. Bit 0 (the least significant bit) corresponding to
button 1 being pressed, bit 1 corresponding to button 2 and so on.

Return:

An integer mask containing a bit mask of the buttons currently pressed in the specified
canvas.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 151

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_poi nt er _ungr ab(Evas e) ;

This function removes the implicit grab of the mouse button once it has become active. This
allows leave and enter events to proceed as per normal which they would not until the
mouse button that was presses to initiate the grab is released.

Arguments:

e

A valid Evas canvas handle.

Evas Documentation Page 152

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_cal l back_add(Evas e, Evas_Obj ect o, Evas_Cal l back_Type cal l back,
 voi d (* f unc) (voi d * _dat a, Evas _e,
 Evas_Obj ect _o, i nt _b,
 i nt _x, i nt _y) ,
 voi d * dat a) ;

This function adds a callback on an object. The func parameter is the function pointer to be
called when the event triggering the callback type callback is triggered on the specified
object. The data pointer parameter is passed to the callback added to the object if it is
called.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

callback

The callback type. This can be one of:

CALLBACK_MOUSE_IN, CALLBACK_MOUSE_OUT, CALLBACK_MOUSE_DOWN,
CALLBACK_MOUSE_UP, CALLBACK_MOUSE_MOVE, CALLBACK_FREE.

func

The pointer to the function to be called when the callback type event is triggered on the
specified object.

data

A pointer to data or NULL that is passed to the calback when it is triggered.

Evas Documentation Page 153

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d evas_cal l back_del (Evas e, Evas_Obj ect o,
 Evas_Cal l back_Type cal l back) ;

This function removes all callbacks set on the specified object that is of the type callback, if
there are any.

Arguments:

e

A valid Evas canvas handle.

o

A valid object handle in the canvas specified.

callback

The callback type. This can be one of:

CALLBACK_MOUSE_IN, CALLBACK_MOUSE_OUT, CALLBACK_MOUSE_DOWN,
CALLBACK_MOUSE_UP, CALLBACK_MOUSE_MOVE, CALLBACK_FREE.

Evas Documentation Page 154

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Li st evas_l i st _append(Evas_Li st l i st , voi d * dat a) ;

This is one of the list convenience functions in Evas. This function appends a pointer to data
to an existing list at the end − be it empty or not. Example usage:

Evas_Li st l i st = NULL;
voi d * dat a;

l i st = evas_l i st _append(l i st , dat a) ;

Return:

A modified list handle.

Arguments:

list

A filled or empty list handle (an empty list being a NULL pointer).

data

A pointer to the data to be appended.

Evas Documentation Page 155

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Li st evas_l i st _pr epend(Evas_Li st l i st , voi d * dat a) ;

This is one of the list convenience functions in Evas. This function pepends a pointer to data
to an existing list at its start − be it empty or not. Example usage:

Evas_Li st l i st = NULL;
voi d * dat a;

l i st = evas_l i st _pr epend(l i st , dat a) ;

Return:

A modified list handle.

Arguments:

list

A filled or empty list handle (an empty list being a NULL pointer).

data

A pointer to the data to be prepended.

Evas Documentation Page 156

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Li st evas_l i st _append_r el at i ve(Evas_Li st l i st , voi d * dat a,
 voi d * r el at i ve) ;

This is one of the list convenience functions in Evas. This function appends a pointer to data
to an existing list after the element with the data pointer specified by relative. If the element
does not exist in the list the item is appended to the end of the list. Example usage:

Evas_Li st l i st = NULL;
voi d * dat a, * r el at i ve;

l i st = evas_l i st _append_r el at i ve(l i st , dat a, r el at i ve) ;

Return:

A modified list handle.

Arguments:

list

A filled or empty list handle (an empty list being a NULL pointer).

data

A pointer to the data to be appended.

relative

A pointer to the data to be appended immediately after.

Evas Documentation Page 157

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Li st evas_l i st _pr epend_r el at i ve(Evas_Li st l i st , voi d * dat a,
 voi d * r el at i ve) ;

This is one of the list convenience functions in Evas. This function prepends a pointer to
data to an existing list before the element with the data pointer specified by relative. If the
element does not exist in the list the item is prepended to the start of the list. Example
usage:

Evas_Li st l i st = NULL;
voi d * dat a, * r el at i ve;

l i st = evas_l i st _pr epend_r el at i ve(l i st , dat a, r el at i ve) ;

Return:

A modified list handle.

Arguments:

list

A filled or empty list handle (an empty list being a NULL pointer).

data

A pointer to the data to be prepended.

relative

A pointer to the data to be prepended immediately before.

Evas Documentation Page 158

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Li st evas_l i st _r emove(Evas_Li st l i st , voi d * dat a) ;

This function removes the element of the list with the data pointer specified by data if it is in
the list. If it isn’t it does nothing. Example usage:

Evas_Li st l i st = NULL;
voi d * dat a;

l i st = evas_l i st _r emove(l i st , dat a) ;

Return:

A modified list handle.

Arguments:

list

A filled or empty list handle (an empty list being a NULL pointer).

data

A pointer to the data of the element to be removed from the list.

Evas Documentation Page 159

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Li st evas_l i st _r emove_l i st (Evas_Li st l i st , Evas_Li st r emove_l i st) ;

This function removes The tail of a list starting at the list pointer remove_list from the list list
passed in, if it exists, and returns the modified original list.

Return:

A modified list handle.

Arguments:

list

A filled or empty list handle (an empty list being a NULL pointer).

remove_list

The list element pointer to remove from the list as the head of the new list. All elements after
this element in the list are now at the tail of the newly removed list.

Evas Documentation Page 160

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

voi d * evas_l i st _f i nd(Evas_Li st l i st , voi d * dat a) ;

This function finds an element in the list with the data pointer specified. If it exists the data
pointer specified is returned, if not NULL is returned.

Return:

The data pointer to the list element found, or NULL if none is found.

Arguments:

list

A filled or empty list handle (an empty list being a NULL pointer).

data

A pointer to the data of the element to be found in the list.

Evas Documentation Page 161

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Evas_Li st evas_l i st _f r ee(Evas_Li st l i st) ;

This function frees the entire list pointed to and returns NULL.

Return:

NULL

Arguments:

list

A filled or empty list handle (an empty list being a NULL pointer).

Evas Documentation Page 162

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Code Examples

The following snippets of code are examples of how to use Evas, and to demonstrate how easy it
really is. Note that these examples require the Evas library AND the Ecore library that wraps and
handles X Events for us so we don’t have to do as much X coding as we would normally have to to
get these programs to run. You will notice the Ecore routines start with an e_ notation.

Evas Documentation Page 163

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Example 1:

#i ncl ude <st di o. h>
#i ncl ude <st dl i b. h>
#i ncl ude <mat h. h>
#i ncl ude <Evas. h>
#i ncl ude <Ecor e. h>

#def i ne MAX_EVAS_COLORS (216)
#def i ne MAX_FONT_CACHE (512 * 1024)
#def i ne MAX_I MAGE_CACHE (1 * (1024 * 1024))
#def i ne FONT_DI RECTORY " . / "
#def i ne RENDER_ENGI NE RENDER_METHOD_ALPHA_SOFTWARE
/ * #def i ne RENDER_ENGI NE RENDER_METHOD_BASI C_HARDWARE * /
/ * #def i ne RENDER_ENGI NE RENDER_METHOD_3D_HARDWARE * /

/ * gener al f unct i ons * /
voi d set up(voi d) ;

/ * cal l backs f or evas handl i ng * /
/ * when t he event queue goes i dl e cal l t hi s * /
st at i c voi d e_i dl e(voi d * dat a) ;
/ * when t he wi ndow get s exposed cal l t hi s * /
st at i c voi d e_wi ndow_expose(Eevent * ev) ;

/ * gl obal s * /
Evas_Obj ect o_f l ower ;
Evas_Obj ect o_bg;
Evas evas;
Evas_Render _Met hod r ender _met hod = RENDER_ENGI NE;

st at i c voi d
e_i dl e(voi d * dat a)
{
 evas_r ender (evas) ;
}

st at i c voi d
e_wi ndow_expose(Eevent * ev)
{
 Ev_Wi ndow_Expose * e;

 e = (Ev_Wi ndow_Expose *) ev−>event ;
 evas_updat e_r ect (evas, e−>x, e−>y, e−>w, e−>h) ;
}

/ * meat * /
voi d
set up(voi d)
{
 Wi ndow wi n, ewi n;
 i nt i ;

 / * set up cal l backs f or event s * /
 e_event _f i l t er _handl er _add(EV_WI NDOW_EXPOSE,
e_wi ndow_expose) ;
 / * handl er f or when t he event queue goes i dl e * /
 e_event _f i l t er _i dl e_handl er _add(e_i dl e, NULL) ;
 / * cr eat e a 400x300 t opl evel wi ndow * /
 wi n = e_wi ndow_new(0, 0, 0, 400, 400) ;

 / * cr eat e a 400x300 evas r ender i ng i n sof t war e − convei ence f unct i on
t hat * /
 / * al so cr eat es t he wi ndow f or us i n t he r i ght col or map & vi sual * /
 evas = evas_new_al l (e_di spl ay_get () , wi n, 0, 0, 400, 400,
r ender _met hod,

 MAX_EVAS_COLORS, MAX_FONT_CACHE, MAX_I MAGE_CACHE,
 FONT_DI RECTORY) ;

 / * get t he wi ndow I D f or t he evas cr eat ed f or us * /

Evas Documentation Page 164

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

 ewi n = evas_get _wi ndow(evas) ;

 / * show t he evas wi ndow * /
 e_wi ndow_show(ewi n) ;
 / * set t he event s t hi s wi ndow accept s * /
 e_wi ndow_set _event s(ewi n, XEV_EXPOSE) ;
 / * show t he t opl evel * /
 e_wi ndow_show(wi n) ;

 / * now. . . cr eat e obj ect s i n t he evas * /
 o_bg = evas_add_r ect angl e(evas) ;
 evas_move(evas, o_bg, 0, 0) ;
 evas_r esi ze(evas, o_bg, 400, 400) ;
 evas_set _col or (evas, o_bg, 255, 255, 255, 255) ;
 evas_show(evas, o_bg) ;

 o_f l ower = evas_add_i mage_f r om_f i l e(evas, " f l ower . png") ;
 evas_move(evas, o_f l ower , 10. 0, 30. 0) ;
 evas_show(evas, o_f l ower) ;
 evas_r esi ze(evas, o_f l ower , 300. 0, 200. 0) ;
 evas_set _i mage_f i l l (evas, o_f l ower , 0. 0, 0. 0, 40. 0, 30. 0) ;
}

i nt
mai n(i nt ar gc, char * * ar gv)
{
 / * command l i ne par si ng * /
 {

i nt i ;

f or (i = 1; i < ar gc; i ++)
 {
 i f (! st r cmp(ar gv[i] , " sof t "))
 r ender _met hod = RENDER_METHOD_ALPHA_SOFTWARE;
 i f (! st r cmp(ar gv[i] , " x11"))
 r ender _met hod = RENDER_METHOD_BASI C_HARDWARE;
 i f (! st r cmp(ar gv[i] , " har d"))
 r ender _met hod = RENDER_METHOD_3D_HARDWARE;
 }

 }
 / * i ni t X * /
 e_di spl ay_i ni t (NULL) ;
 / * set up handl er s f or syst em si gnal s * /
 e_ev_si gnal _i ni t () ;
 / * set up t he event f i l t er * /
 e_event _f i l t er _i ni t () ;
 / * set up t he X event i nt er nal s * /
 e_ev_x_i ni t () ;

 / * pr ogr am does i t s dat a set up her e * /
 set up() ;
 / * and now l oop f or ever handl i ng event s * /
 e_event _l oop() ;
}

Evas Documentation Page 165

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Example 2:

#i ncl ude <st di o. h>
#i ncl ude <st dl i b. h>
#i ncl ude <mat h. h>
#i ncl ude <Evas. h>
#i ncl ude <Ecor e. h>

#def i ne MAX_EVAS_COLORS (216)
#def i ne MAX_FONT_CACHE (512 * 1024)
#def i ne MAX_I MAGE_CACHE (1 * (1024 * 1024))
#def i ne FONT_DI RECTORY " . / "
#def i ne RENDER_ENGI NE RENDER_METHOD_ALPHA_SOFTWARE
/ * #def i ne RENDER_ENGI NE RENDER_METHOD_BASI C_HARDWARE * /
/ * #def i ne RENDER_ENGI NE RENDER_METHOD_3D_HARDWARE * /

/ * gener al f unct i ons * /
voi d set up(voi d) ;

/ * cal l backs f or evas handl i ng * /
/ * when t he event queue goes i dl e cal l t hi s * /
st at i c voi d e_i dl e(voi d * dat a) ;
/ * when t he wi ndow get s exposed cal l t hi s * /
st at i c voi d e_wi ndow_expose(Eevent * ev) ;

/ * gl obal s * /
Evas_Obj ect o_f l ower ;
Evas_Obj ect o_bg;
Evas_Obj ect o_t ext ;
Evas_Obj ect o_gr ad;
Evas evas;
Evas_Render _Met hod r ender _met hod = RENDER_ENGI NE;

st at i c voi d
e_i dl e(voi d * dat a)
{
 evas_r ender (evas) ;
}

st at i c voi d
e_wi ndow_expose(Eevent * ev)
{
 Ev_Wi ndow_Expose * e;

 e = (Ev_Wi ndow_Expose *) ev−>event ;
 evas_updat e_r ect (evas, e−>x, e−>y, e−>w, e−>h) ;
}

/ * meat * /
voi d
set up(voi d)
{
 Wi ndow wi n, ewi n;
 i nt i ;
 Evas_Gr adi ent gr ad;

 / * set up cal l backs f or event s * /
 e_event _f i l t er _handl er _add(EV_WI NDOW_EXPOSE,
e_wi ndow_expose) ;
 / * handl er f or when t he event queue goes i dl e * /
 e_event _f i l t er _i dl e_handl er _add(e_i dl e, NULL) ;
 / * cr eat e a 400x300 t opl evel wi ndow * /
 wi n = e_wi ndow_new(0, 0, 0, 400, 400) ;

 / * cr eat e a 400x300 evas r ender i ng i n sof t war e − convei ence f unct i on
t hat * /
 / * al so cr eat es t he wi ndow f or us i n t he r i ght col or map & vi sual * /
 evas = evas_new_al l (e_di spl ay_get () , wi n, 0, 0, 400, 400,
r ender _met hod,

Evas Documentation Page 166

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

 MAX_EVAS_COLORS, MAX_FONT_CACHE, MAX_I MAGE_CACHE,
 FONT_DI RECTORY) ;

 / * get t he wi ndow I D f or t he evas cr eat ed f or us * /
 ewi n = evas_get _wi ndow(evas) ;

 / * show t he evas wi ndow * /
 e_wi ndow_show(ewi n) ;
 / * set t he event s t hi s wi ndow accept s * /
 e_wi ndow_set _event s(ewi n, XEV_EXPOSE) ;
 / * show t he t opl evel * /
 e_wi ndow_show(wi n) ;

 / * now. . . cr eat e obj ect s i n t he evas * /
 o_bg = evas_add_r ect angl e(evas) ;
 evas_move(evas, o_bg, 0, 0) ;
 evas_r esi ze(evas, o_bg, 400, 400) ;
 evas_set _col or (evas, o_bg, 255, 255, 255, 255) ;
 evas_show(evas, o_bg) ;

 o_f l ower = evas_add_i mage_f r om_f i l e(evas, " f l ower . png") ;
 evas_move(evas, o_f l ower , 10. 0, 30. 0) ;
 evas_show(evas, o_f l ower) ;

 o_t ext = evas_add_t ext (evas, " not epad" , 18, " Her e i s a l i ne of t ext ! ") ;
 evas_move(evas, o_t ext , 120. 0, 50. 0) ;
 evas_set _col or (evas, o_t ext , 0, 0, 0, 255) ;
 evas_show(evas, o_t ext) ;

 o_gr ad = evas_add_gr adi ent _box(evas) ;
 evas_move(evas, o_gr ad, 150. 0, 100. 0) ;
 evas_r esi ze(evas, o_gr ad, 200. 0, 120. 0) ;
 gr ad = evas_gr adi ent _new() ;
 evas_gr adi ent _add_col or (gr ad, 255, 255, 255, 255, 10) ;
 evas_gr adi ent _add_col or (gr ad, 255, 255, 0, 255, 10) ;
 evas_gr adi ent _add_col or (gr ad, 255, 0, 0, 255, 10) ;
 evas_gr adi ent _add_col or (gr ad, 0, 0, 128, 255, 10) ;
 evas_gr adi ent _add_col or (gr ad, 0, 0, 128, 0, 10) ;
 evas_set _gr adi ent (evas, o_gr ad, gr ad) ;
 evas_gr adi ent _f r ee(gr ad) ;
 evas_set _angl e(evas, o_gr ad, 290. 0) ;
 evas_show(evas, o_gr ad) ;
}

i nt
mai n(i nt ar gc, char * * ar gv)
{
 / * command l i ne par si ng * /
 {

i nt i ;

f or (i = 1; i < ar gc; i ++)
 {
 i f (! st r cmp(ar gv[i] , " sof t "))
 r ender _met hod = RENDER_METHOD_ALPHA_SOFTWARE;
 i f (! st r cmp(ar gv[i] , " x11"))
 r ender _met hod = RENDER_METHOD_BASI C_HARDWARE;
 i f (! st r cmp(ar gv[i] , " har d"))
 r ender _met hod = RENDER_METHOD_3D_HARDWARE;
 }

 }
 / * i ni t X * /
 e_di spl ay_i ni t (NULL) ;
 / * set up handl er s f or syst em si gnal s * /
 e_ev_si gnal _i ni t () ;
 / * set up t he event f i l t er * /
 e_event _f i l t er _i ni t () ;
 / * set up t he X event i nt er nal s * /
 e_ev_x_i ni t () ;

 / * pr ogr am does i t s dat a set up her e * /
 set up() ;

Evas Documentation Page 167

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

 / * and now l oop f or ever handl i ng event s * /
 e_event _l oop() ;
}

Evas Documentation Page 168

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Example 3:

#i ncl ude <st di o. h>
#i ncl ude <st dl i b. h>
#i ncl ude <mat h. h>
#i ncl ude <Evas. h>
#i ncl ude <Ecor e. h>

#def i ne MAX_EVAS_COLORS (216)
#def i ne MAX_FONT_CACHE (512 * 1024)
#def i ne MAX_I MAGE_CACHE (1 * (1024 * 1024))
#def i ne FONT_DI RECTORY " . / "
#def i ne RENDER_ENGI NE RENDER_METHOD_ALPHA_SOFTWARE
/ * #def i ne RENDER_ENGI NE RENDER_METHOD_BASI C_HARDWARE * /
/ * #def i ne RENDER_ENGI NE RENDER_METHOD_3D_HARDWARE * /

/ * gener al f unct i ons * /
voi d set up(voi d) ;

/ * cal l backs f or evas handl i ng * /
/ * when t he event queue goes i dl e cal l t hi s * /
st at i c voi d e_i dl e(voi d * dat a) ;
/ * when t he wi ndow get s exposed cal l t hi s * /
st at i c voi d e_wi ndow_expose(Eevent * ev) ;

/ * gl obal s * /
Evas_Obj ect o_f l ower ;
Evas_Obj ect o_bg;
Evas_Obj ect o_t ext ;
Evas_Obj ect o_gr ad;
Evas_Obj ect o_r ect ;
Evas_Obj ect o_pol y;
Evas_Obj ect o_l i ne;
Evas evas;
Evas_Render _Met hod r ender _met hod = RENDER_ENGI NE;

st at i c voi d
e_i dl e(voi d * dat a)
{
 evas_r ender (evas) ;
}

st at i c voi d
e_wi ndow_expose(Eevent * ev)
{
 Ev_Wi ndow_Expose * e;

 e = (Ev_Wi ndow_Expose *) ev−>event ;
 evas_updat e_r ect (evas, e−>x, e−>y, e−>w, e−>h) ;
}

/ * meat * /
voi d
set up(voi d)
{
 Wi ndow wi n, ewi n;
 i nt i ;
 Evas_Gr adi ent gr ad;

 / * set up cal l backs f or event s * /
 e_event _f i l t er _handl er _add(EV_WI NDOW_EXPOSE,
e_wi ndow_expose) ;
 / * handl er f or when t he event queue goes i dl e * /
 e_event _f i l t er _i dl e_handl er _add(e_i dl e, NULL) ;
 / * cr eat e a 400x300 t opl evel wi ndow * /
 wi n = e_wi ndow_new(0, 0, 0, 400, 400) ;

 / * cr eat e a 400x300 evas r ender i ng i n sof t war e − convei ence f unct i on
t hat * /

Evas Documentation Page 169

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

 / * al so cr eat es t he wi ndow f or us i n t he r i ght col or map & vi sual * /
 evas = evas_new_al l (e_di spl ay_get () , wi n, 0, 0, 400, 400,
r ender _met hod,

 MAX_EVAS_COLORS, MAX_FONT_CACHE, MAX_I MAGE_CACHE,
 FONT_DI RECTORY) ;

 / * get t he wi ndow I D f or t he evas cr eat ed f or us * /
 ewi n = evas_get _wi ndow(evas) ;

 / * show t he evas wi ndow * /
 e_wi ndow_show(ewi n) ;
 / * set t he event s t hi s wi ndow accept s * /
 e_wi ndow_set _event s(ewi n, XEV_EXPOSE | XEV_BUTTON | XEV_MOUSE_MOVE) ;
 / * show t he t opl evel * /
 e_wi ndow_show(wi n) ;

 / * now. . . cr eat e obj ect s i n t he evas * /
 o_bg = evas_add_r ect angl e(evas) ;
 evas_move(evas, o_bg, 0, 0) ;
 evas_r esi ze(evas, o_bg, 400, 400) ;
 evas_set _col or (evas, o_bg, 255, 255, 255, 255) ;
 evas_show(evas, o_bg) ;

 o_f l ower = evas_add_i mage_f r om_f i l e(evas, " f l ower . png") ;
 evas_move(evas, o_f l ower , 10. 0, 30. 0) ;
 evas_show(evas, o_f l ower) ;

 o_t ext = evas_add_t ext (evas, " not epad" , 18, " Her e i s a l i ne of t ext ! ") ;
 evas_move(evas, o_t ext , 120. 0, 50. 0) ;
 evas_set _col or (evas, o_t ext , 0, 0, 0, 255) ;
 evas_show(evas, o_t ext) ;

 o_gr ad = evas_add_gr adi ent _box(evas) ;
 evas_move(evas, o_gr ad, 150. 0, 100. 0) ;
 evas_r esi ze(evas, o_gr ad, 200. 0, 120. 0) ;
 gr ad = evas_gr adi ent _new() ;
 evas_gr adi ent _add_col or (gr ad, 255, 255, 255, 255, 10) ;
 evas_gr adi ent _add_col or (gr ad, 255, 255, 0, 255, 10) ;
 evas_gr adi ent _add_col or (gr ad, 255, 0, 0, 255, 10) ;
 evas_gr adi ent _add_col or (gr ad, 0, 0, 128, 255, 10) ;
 evas_gr adi ent _add_col or (gr ad, 0, 0, 128, 0, 10) ;
 evas_set _gr adi ent (evas, o_gr ad, gr ad) ;
 evas_gr adi ent _f r ee(gr ad) ;
 evas_set _angl e(evas, o_gr ad, 290. 0) ;
 evas_show(evas, o_gr ad) ;

 o_r ect = evas_add_r ect angl e(evas) ;
 evas_move(evas, o_r ect , 20. 0, 130. 0) ;
 evas_r esi ze(evas, o_r ect , 50. 0, 70. 0) ;
 evas_set _col or (evas, o_r ect , 20. 0, 50. 0, 100. 0, 130. 0) ;
 evas_show(evas, o_r ect) ;

 o_pol y = evas_add_pol y(evas) ;
 evas_add_poi nt (evas, o_pol y, 0. 0, 0. 0) ;
 evas_add_poi nt (evas, o_pol y, 150. 0, 80. 0) ;
 evas_add_poi nt (evas, o_pol y, 210. 0, 150. 0) ;
 evas_add_poi nt (evas, o_pol y, 80. 0, 110. 0) ;
 evas_add_poi nt (evas, o_pol y, 20. 0, 30. 0) ;
 evas_set _col or (evas, o_pol y, 200. 0, 40. 0, 0. 0, 130. 0) ;
 evas_move(evas, o_pol y, 20. 0, 220. 0) ;
 evas_show(evas, o_pol y) ;

 o_l i ne = evas_add_l i ne(evas) ;
 evas_set _l i ne_xy(evas, o_l i ne, 220. 0, 240. 0, 390. 0, 380. 0) ;
 evas_set _col or (evas, o_l i ne, 30. 0, 80. 0, 80. 0, 200. 0) ;
 evas_show(evas, o_l i ne) ;
}

i nt
mai n(i nt ar gc, char * * ar gv)
{
 / * command l i ne par si ng * /

Evas Documentation Page 170

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

 {
i nt i ;

f or (i = 1; i < ar gc; i ++)
 {
 i f (! st r cmp(ar gv[i] , " sof t "))
 r ender _met hod = RENDER_METHOD_ALPHA_SOFTWARE;
 i f (! st r cmp(ar gv[i] , " x11"))
 r ender _met hod = RENDER_METHOD_BASI C_HARDWARE;
 i f (! st r cmp(ar gv[i] , " har d"))
 r ender _met hod = RENDER_METHOD_3D_HARDWARE;
 }

 }
 / * i ni t X * /
 e_di spl ay_i ni t (NULL) ;
 / * set up handl er s f or syst em si gnal s * /
 e_ev_si gnal _i ni t () ;
 / * set up t he event f i l t er * /
 e_event _f i l t er _i ni t () ;
 / * set up t he X event i nt er nal s * /
 e_ev_x_i ni t () ;

 / * pr ogr am does i t s dat a set up her e * /
 set up() ;
 / * and now l oop f or ever handl i ng event s * /
 e_event _l oop() ;
}

Evas Documentation Page 171

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Example 4:

#i ncl ude <st di o. h>
#i ncl ude <st dl i b. h>
#i ncl ude <mat h. h>
#i ncl ude <sys/ t i me. h>
#i ncl ude <uni st d. h>
#i ncl ude <Evas. h>
#i ncl ude <Ecor e. h>

#def i ne MAX_EVAS_COLORS (216)
#def i ne MAX_FONT_CACHE (512 * 1024)
#def i ne MAX_I MAGE_CACHE (1 * (1024 * 1024))
#def i ne FONT_DI RECTORY " . / "
#def i ne RENDER_ENGI NE RENDER_METHOD_ALPHA_SOFTWARE
/ * #def i ne RENDER_ENGI NE RENDER_METHOD_BASI C_HARDWARE * /
/ * #def i ne RENDER_ENGI NE RENDER_METHOD_3D_HARDWARE * /

/ * gener al f unct i ons * /
doubl e get _t i me (voi d) ;
voi d set up(voi d) ;

/ * cal l backs f or evas handl i ng * /
/ * t i meout cal l ed ever y now and agai n f or ani mat i on * /
st at i c voi d e_t i meout (i nt val , voi d * dat a) ;
/ * when t he event queue goes i dl e cal l t hi s * /
st at i c voi d e_i dl e(voi d * dat a) ;
/ * when t he wi ndow get s exposed cal l t hi s * /
st at i c voi d e_wi ndow_expose(Eevent * ev) ;

/ * gl obal s * /
Evas_Obj ect o_cube;
Evas_Obj ect o_bg;
Evas evas;
Evas_Render _Met hod r ender _met hod = RENDER_ENGI NE;

/ * cal l backs * /
st at i c voi d
e_t i meout (i nt val , voi d * dat a)
{
 i nt i ;
 doubl e v;
 st at i c doubl e st ar t = 0. 0;

 i f (st ar t == 0. 0) st ar t = get _t i me() ;
 v = (get _t i me() − st ar t) / 10;
 evas_set _col or (evas, o_cube,

 ((i nt) ((si n(v) + 1. 0) * 127. 5)) & 0xf f ,
 ((i nt) ((si n(v * 2) + 1. 0) * 127. 5)) & 0xf f ,
 ((i nt) ((si n(v / 2) + 1. 0) * 127. 5)) & 0xf f ,
 ((i nt) ((si n(v / 8) + 1. 0) * 127. 5)) & 0xf f) ;

 e_add_event _t i mer (" e_t i meout () " , 0. 10, e_t i meout , val + 1, NULL) ;
}

st at i c voi d
e_i dl e(voi d * dat a)
{
 evas_r ender (evas) ;
}

st at i c voi d
e_wi ndow_expose(Eevent * ev)
{
 Ev_Wi ndow_Expose * e;

 e = (Ev_Wi ndow_Expose *) ev−>event ;
 evas_updat e_r ect (evas, e−>x, e−>y, e−>w, e−>h) ;
}

Evas Documentation Page 172

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

/ * ut i l s * /
doubl e
get _t i me(voi d)
{
 st r uct t i meval t i mev;

 get t i meof day(&t i mev, NULL) ;
 r et ur n (doubl e) t i mev. t v_sec + (((doubl e) t i mev. t v_usec) / 1000000) ;
}

/ * meat * /
voi d
set up(voi d)
{
 Wi ndow wi n, ewi n;
 i nt i , w, h;

 / * set up cal l backs f or event s * /
 e_event _f i l t er _handl er _add(EV_WI NDOW_EXPOSE,
e_wi ndow_expose) ;
 / * handl er f or when t he event queue goes i dl e * /
 e_event _f i l t er _i dl e_handl er _add(e_i dl e, NULL) ;
 / * cr eat e a 400x300 t opl evel wi ndow * /
 wi n = e_wi ndow_new(0, 0, 0, 400, 400) ;

 / * cr eat e a 400x300 evas r ender i ng i n sof t war e − convei ence f unct i on
t hat * /
 / * al so cr eat es t he wi ndow f or us i n t he r i ght col or map & vi sual * /
 evas = evas_new_al l (e_di spl ay_get () , wi n, 0, 0, 400, 400,
r ender _met hod,

 MAX_EVAS_COLORS, MAX_FONT_CACHE, MAX_I MAGE_CACHE,
 FONT_DI RECTORY) ;

 / * get t he wi ndow I D f or t he evas cr eat ed f or us * /
 ewi n = evas_get _wi ndow(evas) ;

 / * show t he evas wi ndow * /
 e_wi ndow_show(ewi n) ;
 / * set t he event s t hi s wi ndow accept s * /
 e_wi ndow_set _event s(ewi n, XEV_EXPOSE | XEV_BUTTON | XEV_MOUSE_MOVE) ;
 / * show t he t opl evel * /
 e_wi ndow_show(wi n) ;

 / * now. . . cr eat e obj ect s i n t he evas * /
 o_bg = evas_add_i mage_f r om_f i l e(evas, " bg. png") ;
 evas_move(evas, o_bg, 0, 0) ;
 evas_r esi ze(evas, o_bg, 400, 400) ;
 evas_show(evas, o_bg) ;

 o_cube = evas_add_i mage_f r om_f i l e(evas, " cube. png") ;
 evas_get _i mage_si ze(evas, o_cube, &w, &h) ;
 evas_move(evas, o_cube, (400 − (doubl e) w) / 2. 0, (400 − (doubl e) h) /
2. 0) ;
 evas_show(evas, o_cube) ;

/ *
 evas_set _col or (evas, o_cube, 255, 0, 0, 255) ;
 evas_set _col or (evas, o_cube, 255, 255, 0, 255) ;
 evas_set _col or (evas, o_cube, 0, 0, 255, 255) ;
 evas_set _col or (evas, o_cube, 255, 255, 255, 128) ;
 evas_set _col or (evas, o_cube, 128, 128, 128, 255) ;
 * /
/ *
 evas_set _col or (evas, o_cube, 128, 0, 0, 128) ;
 * /
}

i nt
mai n(i nt ar gc, char * * ar gv)
{
 / * command l i ne par si ng * /
 {

Evas Documentation Page 173

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

i nt i ;

f or (i = 1; i < ar gc; i ++)
 {
 i f (! st r cmp(ar gv[i] , " sof t "))
 r ender _met hod = RENDER_METHOD_ALPHA_SOFTWARE;
 i f (! st r cmp(ar gv[i] , " x11"))
 r ender _met hod = RENDER_METHOD_BASI C_HARDWARE;
 i f (! st r cmp(ar gv[i] , " har d"))
 r ender _met hod = RENDER_METHOD_3D_HARDWARE;
 }

 }
 / * i ni t X * /
 e_di spl ay_i ni t (NULL) ;
 / * set up handl er s f or syst em si gnal s * /
 e_ev_si gnal _i ni t () ;
 / * set up t he event f i l t er * /
 e_event _f i l t er _i ni t () ;
 / * set up t he X event i nt er nal s * /
 e_ev_x_i ni t () ;

 / * pr ogr am does i t s dat a set up her e * /
 set up() ;
 / * and now l oop f or ever handl i ng event s * /
 e_t i meout (0, NULL) ;
 e_event _l oop() ;
}

Evas Documentation Page 174

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Example 5:

#i ncl ude <st di o. h>
#i ncl ude <st dl i b. h>
#i ncl ude <mat h. h>
#i ncl ude <sys/ t i me. h>
#i ncl ude <uni st d. h>
#i ncl ude <Evas. h>
#i ncl ude <Ecor e. h>

#def i ne MAX_EVAS_COLORS (216)
#def i ne MAX_FONT_CACHE (512 * 1024)
#def i ne MAX_I MAGE_CACHE (1 * (1024 * 1024))
#def i ne FONT_DI RECTORY " . / "
#def i ne RENDER_ENGI NE RENDER_METHOD_ALPHA_SOFTWARE
/ * #def i ne RENDER_ENGI NE RENDER_METHOD_BASI C_HARDWARE * /
/ * #def i ne RENDER_ENGI NE RENDER_METHOD_3D_HARDWARE * /

/ * gener al f unct i ons * /
doubl e get _t i me (voi d) ;
voi d set up(voi d) ;

/ * cal l backs f or evas handl i ng * /
/ * t i meout cal l ed ever y now and agai n f or ani mat i on * /
st at i c voi d e_t i meout (i nt val , voi d * dat a) ;
/ * when t he event queue goes i dl e cal l t hi s * /
st at i c voi d e_i dl e(voi d * dat a) ;
/ * when t he wi ndow get s exposed cal l t hi s * /
st at i c voi d e_wi ndow_expose(Eevent * ev) ;

/ * gl obal s * /
Evas_Obj ect o_cube[8] ;
Evas_Obj ect o_bg;
Evas_Obj ect o_cl i p;
Evas evas;
Evas_Render _Met hod r ender _met hod = RENDER_ENGI NE;

/ * cal l backs * /
st at i c voi d
e_t i meout (i nt val , voi d * dat a)
{
 i nt i ;
 doubl e v, w, h;
 st at i c doubl e st ar t = 0. 0;

 i f (st ar t == 0. 0) st ar t = get _t i me() ;
 v = (get _t i me() − st ar t) / 10;
 f or (i = 0; i < 8; i ++)
 {

evas_get _geomet r y(evas, o_cube[i] , NULL, NULL, &w, &h) ;
evas_move(evas, o_cube[i] ,

 200 − (w / 2) + (si n((v * 31) + ((doubl e) i * 3. 141592654 /
4)) * 150)

 ,
 200 − (h / 2) + (cos((v * 18) + ((doubl e) i * 3. 141592654 /

4)) * 130)
) ;

 }
 e_add_event _t i mer (" e_t i meout () " , 0. 01, e_t i meout , val + 1, NULL) ;
}

st at i c voi d
e_i dl e(voi d * dat a)
{
 evas_r ender (evas) ;
}

st at i c voi d
e_wi ndow_expose(Eevent * ev)

Evas Documentation Page 175

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

{
 Ev_Wi ndow_Expose * e;

 e = (Ev_Wi ndow_Expose *) ev−>event ;
 evas_updat e_r ect (evas, e−>x, e−>y, e−>w, e−>h) ;
}

/ * ut i l s * /
doubl e
get _t i me(voi d)
{
 st r uct t i meval t i mev;

 get t i meof day(&t i mev, NULL) ;
 r et ur n (doubl e) t i mev. t v_sec + (((doubl e) t i mev. t v_usec) / 1000000) ;
}

/ * meat * /
voi d
set up(voi d)
{
 Wi ndow wi n, ewi n;
 i nt i , w, h;

 / * set up cal l backs f or event s * /
 e_event _f i l t er _handl er _add(EV_WI NDOW_EXPOSE,
e_wi ndow_expose) ;
 / * handl er f or when t he event queue goes i dl e * /
 e_event _f i l t er _i dl e_handl er _add(e_i dl e, NULL) ;
 / * cr eat e a 400x300 t opl evel wi ndow * /
 wi n = e_wi ndow_new(0, 0, 0, 400, 400) ;

 / * cr eat e a 400x300 evas r ender i ng i n sof t war e − convei ence f unct i on
t hat * /
 / * al so cr eat es t he wi ndow f or us i n t he r i ght col or map & vi sual * /
 evas = evas_new_al l (e_di spl ay_get () , wi n, 0, 0, 400, 400,
r ender _met hod,

 MAX_EVAS_COLORS, MAX_FONT_CACHE, MAX_I MAGE_CACHE,
 FONT_DI RECTORY) ;

 / * get t he wi ndow I D f or t he evas cr eat ed f or us * /
 ewi n = evas_get _wi ndow(evas) ;

 / * show t he evas wi ndow * /
 e_wi ndow_show(ewi n) ;
 / * set t he event s t hi s wi ndow accept s * /
 e_wi ndow_set _event s(ewi n, XEV_EXPOSE | XEV_BUTTON | XEV_MOUSE_MOVE) ;
 / * show t he t opl evel * /
 e_wi ndow_show(wi n) ;

 / * now. . . cr eat e obj ect s i n t he evas * /
 o_bg = evas_add_i mage_f r om_f i l e(evas, " bg. png") ;
 evas_move(evas, o_bg, 0, 0) ;
 evas_r esi ze(evas, o_bg, 400, 400) ;
 evas_show(evas, o_bg) ;

 o_cl i p = evas_add_r ect angl e(evas) ;
 evas_move(evas, o_cl i p, 20. 0, 20. 0) ;
 evas_r esi ze(evas, o_cl i p, 180. 0, 180. 0) ;
 evas_set _col or (evas, o_cl i p, 255, 255, 255, 255) ;
 evas_show(evas, o_cl i p) ;

 f or (i = 0; i < 8; i ++)
 {

o_cube[i] = evas_add_i mage_f r om_f i l e(evas, " cube. png") ;
evas_set _cl i p(evas, o_cube[i] , o_cl i p) ;
evas_get _i mage_si ze(evas, o_cube[i] , &w, &h) ;
evas_set _col or (evas, o_cube[i] , r and() & 0xf f , r and() & 0xf f , r and()

& 0xf f , 0xf f) ;
evas_r esi ze(evas, o_cube[i] , (doubl e) (w / 2) , (doubl e) (h / 2)) ;
evas_set _i mage_f i l l (evas, o_cube[i] , 0, 0, (doubl e) (w / 2) ,

(doubl e) (h / 2)) ;

Evas Documentation Page 176

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

evas_move(evas, o_cube[i] , (400 − (doubl e) (w / 2)) / 2. 0, (400 −
(doubl e) (h / 2)) / 2. 0) ;

evas_show(evas, o_cube[i]) ;
 }
}

i nt
mai n(i nt ar gc, char * * ar gv)
{
 / * command l i ne par si ng * /
 {

i nt i ;

f or (i = 1; i < ar gc; i ++)
 {
 i f (! st r cmp(ar gv[i] , " sof t "))
 r ender _met hod = RENDER_METHOD_ALPHA_SOFTWARE;
 i f (! st r cmp(ar gv[i] , " x11"))
 r ender _met hod = RENDER_METHOD_BASI C_HARDWARE;
 i f (! st r cmp(ar gv[i] , " har d"))
 r ender _met hod = RENDER_METHOD_3D_HARDWARE;
 }

 }
 / * i ni t X * /
 e_di spl ay_i ni t (NULL) ;
 / * set up handl er s f or syst em si gnal s * /
 e_ev_si gnal _i ni t () ;
 / * set up t he event f i l t er * /
 e_event _f i l t er _i ni t () ;
 / * set up t he X event i nt er nal s * /
 e_ev_x_i ni t () ;

 / * pr ogr am does i t s dat a set up her e * /
 set up() ;
 / * and now l oop f or ever handl i ng event s * /
 e_t i meout (0, NULL) ;
 e_event _l oop() ;
}

Evas Documentation Page 177

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

Demo Example:

#i ncl ude <st di o. h>
#i ncl ude <st dl i b. h>
#i ncl ude <mat h. h>
#i ncl ude <sys/ t i me. h>
#i ncl ude <uni st d. h>
#i ncl ude <Evas. h>
#i ncl ude <Ecor e. h>

#def i ne MAX_EVAS_COLORS (216)
#def i ne MAX_FONT_CACHE (512 * 1024)
#def i ne MAX_I MAGE_CACHE (1 * (1024 * 1024))
#def i ne FONT_DI RECTORY " . / "
#def i ne RENDER_ENGI NE RENDER_METHOD_ALPHA_SOFTWARE
/ * #def i ne RENDER_ENGI NE RENDER_METHOD_BASI C_HARDWARE * /
/ * #def i ne RENDER_ENGI NE RENDER_METHOD_3D_HARDWARE * /

/ * gener al f unct i ons * /
doubl e get _t i me (voi d) ;
voi d set up(voi d) ;

/ * cal l backs f or evas handl i ng * /
/ * t i meout cal l ed ever y now and agai n f or ani mat i on * /
st at i c voi d e_t i meout (i nt v, voi d * dat a) ;
/ * when t he event queue goes i dl e cal l t hi s * /
st at i c voi d e_i dl e(voi d * dat a) ;
/ * when t he wi ndow get s exposed cal l t hi s * /
st at i c voi d e_wi ndow_expose(Eevent * ev) ;
/ * when t he mouse moves i n t he wi ndow cal l t hi s * /
st at i c voi d e_mouse_move(Eevent * ev) ;
/ * when a mouse but t on goes down i n t he wi ndow cal l t hi s * /
st at i c voi d e_mouse_down(Eevent * ev) ;
/ * when a mouse but t on i s r el eased i n t he wi ndow cal l t hi s * /
st at i c voi d e_mouse_up(Eevent * ev) ;

/ * gl obal s * /
Evas_Obj ect o_bg, o_l ogo, o_l ogo_sh, o_t ext ;
Evas_Obj ect o_b1, o_b1_sh;
Evas_Obj ect o_b2, o_b2_sh;
Evas_Obj ect o_b3, o_b3_sh;
Evas evas;
Evas_Render _Met hod r ender _met hod = RENDER_ENGI NE;
i nt max_col or s = MAX_EVAS_COLORS;
doubl e st ar t = 0. 0;
doubl e end = 10. 0;
Wi ndow mai n_wi n;

/ * cal l backs * /
st at i c voi d
e_t i meout (i nt v, voi d * dat a)
{
 i nt i ;
 doubl e val ;
 doubl e x, y, z, r ;
 i nt mouse_x, mouse_y;
 i nt w, h;

 mouse_x = 0;
 mouse_y = 0;

 i f (st ar t == 0. 0) st ar t = get _t i me() ;
 val = get _t i me() − st ar t ;

 r = (end − val) / end;
 evas_set _col or (evas, o_t ext , 0, 0, 0, 255 − (255 * r)) ;

 i f (val > end)
 val = 0. 0;

Evas Documentation Page 178

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

 el se
 val * = ((end − val) * (end − val)) / (end * end) ;

 val += 3. 0;

 r = 48;
 z = ((2 + si n(val * 6 + (3. 14159 * 0))) / 3) * 64;
 x = (r + 32) + (cos(val * 4 + (3. 14159 * 0)) * r) − (z / 2) ;
 y = (r + 32) + (si n(val * 6 + (3. 14159 * 0)) * r) − (z / 2) ;
 evas_r esi ze(evas, o_b1, z, z) ;
 evas_set _i mage_f i l l (evas, o_b1, 0, 0, z, z) ;
 evas_move(evas, o_b1, x, y) ;
 evas_r esi ze(evas, o_b1_sh, z, z) ;
 evas_set _i mage_f i l l (evas, o_b1_sh, 0, 0, z, z) ;
 evas_move(evas, o_b1_sh,

 x − ((mouse_x − (x + (z / 2))) / 16) + (z / 2) ,
 y − ((mouse_y − (y + (z / 2))) / 16) + (z / 2)) ;

 z = ((2 + si n(val * 6 + (3. 14159 * 0. 66))) / 3) * 64;
 x = (r + 32) + (cos(val * 4 + (3. 14159 * 0. 66)) * r) − (z / 2) ;
 y = (r + 32) + (si n(val * 6 + (3. 14159 * 0. 66)) * r) − (z / 2) ;
 evas_r esi ze(evas, o_b2, z, z) ;
 evas_set _i mage_f i l l (evas, o_b2, 0, 0, z, z) ;
 evas_move(evas, o_b2, x, y) ;
 evas_r esi ze(evas, o_b2_sh, z, z) ;
 evas_set _i mage_f i l l (evas, o_b2_sh, 0, 0, z, z) ;
 evas_move(evas, o_b2_sh,

 x − ((mouse_x − (x + (z / 2))) / 16) + (z / 2) ,
 y − ((mouse_y − (y + (z / 2))) / 16) + (z / 2)) ;

 z = ((2 + si n(val * 6 + (3. 14159 * 1. 33))) / 3) * 64;
 x = (r + 32) + (cos(val * 4 + (3. 14159 * 1. 33)) * r) − (z / 2) ;
 y = (r + 32) + (si n(val * 6 + (3. 14159 * 1. 33)) * r) − (z / 2) ;
 evas_r esi ze(evas, o_b3, z, z) ;
 evas_set _i mage_f i l l (evas, o_b3, 0, 0, z, z) ;
 evas_move(evas, o_b3, x, y) ;
 evas_r esi ze(evas, o_b3_sh, z, z) ;
 evas_set _i mage_f i l l (evas, o_b3_sh, 0, 0, z, z) ;
 evas_move(evas, o_b3_sh,

 x − ((mouse_x − (x + (z / 2))) / 16) + (z / 2) ,
 y − ((mouse_y − (y + (z / 2))) / 16) + (z / 2)) ;

 e_add_event _t i mer (" e_t i meout () " , 0. 01, e_t i meout , val + 1, NULL) ;
}

st at i c voi d
e_i dl e(voi d * dat a)
{
 evas_r ender (evas) ;
}

st at i c voi d
e_wi ndow_expose(Eevent * ev)
{
 Ev_Wi ndow_Expose * e;

 e = (Ev_Wi ndow_Expose *) ev−>event ;
 evas_updat e_r ect (evas, e−>x, e−>y, e−>w, e−>h) ;
}

st at i c voi d
e_mouse_move(Eevent * ev)
{
 Ev_Mouse_Move * e;

 e = (Ev_Mouse_Move *) ev−>event ;
 evas_event _move(evas, e−>x, e−>y) ;
}

st at i c voi d
e_mouse_down(Eevent * ev)
{
 Ev_Mouse_Down * e;

Evas Documentation Page 179

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

 e = (Ev_Mouse_Down *) ev−>event ;
 evas_event _but t on_down(evas, e−>x, e−>y, e−>but t on) ;
}

st at i c voi d
e_mouse_up(Eevent * ev)
{
 Ev_Mouse_Up * e;

 e = (Ev_Mouse_Up *) ev−>event ;
 evas_event _but t on_up(evas, e−>x, e−>y, e−>but t on) ;
}

st at i c voi d
e_wi ndow_conf i gur e(Eevent * ev)
{
 Ev_Wi ndow_Conf i gur e * e;

 e = (Ev_Wi ndow_Conf i gur e *) ev−>event ;
 i f (e−>wi n == mai n_wi n)
 {

e_wi ndow_r esi ze(evas_get _wi ndow(evas) , e−>w, e−>h) ;
evas_set _out put _si ze(evas, e−>w, e−>h) ;

 }
}
/ * cal l backs evas wi l l cal l f or event s wi t hi n t he evas * /

st at i c voi d
mouse_down(voi d * _dat a, Evas _e, Evas_Obj ect _o, i nt _b, i nt _x, i nt _y)
{
 doubl e x, y;

 evas_get _geomet r y(_e, _o, &x, &y, NULL, NULL) ;
 evas_move(_e, _o, x + 16. 0, y + 16. 0) ;
}

st at i c voi d
mouse_up (voi d * _dat a, Evas _e, Evas_Obj ect _o, i nt _b, i nt _x, i nt _y)
{
 doubl e x, y;

 evas_get _geomet r y(_e, _o, &x, &y, NULL, NULL) ;
 evas_move(_e, _o, x − 16. 0, y − 16. 0) ;
 st ar t = 0. 0;
}

st at i c voi d
mouse_move (voi d * _dat a, Evas _e, Evas_Obj ect _o, i nt _b, i nt _x, i nt _y)
{
}

st at i c voi d
mouse_i n (voi d * _dat a, Evas _e, Evas_Obj ect _o, i nt _b, i nt _x, i nt _y)
{
}

st at i c voi d
mouse_out (voi d * _dat a, Evas _e, Evas_Obj ect _o, i nt _b, i nt _x, i nt _y)
{
}

/ * ut i l s * /
doubl e
get _t i me(voi d)
{
 st r uct t i meval t i mev;

 get t i meof day(&t i mev, NULL) ;
 r et ur n (doubl e) t i mev. t v_sec + (((doubl e) t i mev. t v_usec) / 1000000) ;
}

Evas Documentation Page 180

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

/ * meat * /
voi d
set up(voi d)
{
 Wi ndow wi n, ewi n;
 i nt i ;

 / * set up cal l backs f or event s * /
 e_event _f i l t er _handl er _add(EV_WI NDOW_EXPOSE,
e_wi ndow_expose) ;
 e_event _f i l t er _handl er _add(EV_MOUSE_MOVE, e_mouse_move) ;
 e_event _f i l t er _handl er _add(EV_MOUSE_DOWN, e_mouse_down) ;
 e_event _f i l t er _handl er _add(EV_MOUSE_UP, e_mouse_up) ;
 e_event _f i l t er _handl er _add(EV_WI NDOW_CONFI GURE,
e_wi ndow_conf i gur e) ;
 / * handl er f or when t he event queue goes i dl e * /
 e_event _f i l t er _i dl e_handl er _add(e_i dl e, NULL) ;
 / * cr eat e a 400x300 t opl evel wi ndow * /
 wi n = e_wi ndow_new(0, 0, 0, 400, 400) ;
 e_wi ndow_set _event s(wi n, XEV_CONFI GURE) ;
 mai n_wi n = wi n;

 / * cr eat e a 400x300 evas r ender i ng i n sof t war e − convei ence f unct i on
t hat * /
 / * al so cr eat es t he wi ndow f or us i n t he r i ght col or map & vi sual * /
 evas = evas_new_al l (e_di spl ay_get () , wi n, 0, 0, 400, 400,
r ender _met hod,

 max_col or s, MAX_FONT_CACHE, MAX_I MAGE_CACHE,
 FONT_DI RECTORY) ;

 / * get t he wi ndow I D f or t he evas cr eat ed f or us * /
 ewi n = evas_get _wi ndow(evas) ;

 / * show t he evas wi ndow * /
 e_wi ndow_show(ewi n) ;
 / * set t he event s t hi s wi ndow accept s * /
 e_wi ndow_set _event s(ewi n, XEV_EXPOSE | XEV_BUTTON | XEV_MOUSE_MOVE) ;
 / * show t he t opl evel * /
 e_wi ndow_show(wi n) ;

 / * now. . . cr eat e obj ect s i n t he evas * /
 o_bg = evas_add_i mage_f r om_f i l e(evas, " backgr ound. png") ;
 evas_move(evas, o_bg, 0, 0) ;
 evas_r esi ze(evas, o_bg, 400, 400) ;

 o_l ogo_sh = evas_add_i mage_f r om_f i l e(evas, " l ogo_shadow. png") ;
 o_l ogo = evas_add_i mage_f r om_f i l e(evas, " l ogo. png") ;

 o_b1_sh = evas_add_i mage_f r om_f i l e(evas, " bubbl e_shadow. png") ;
 o_b2_sh = evas_add_i mage_f r om_f i l e(evas, " bubbl e_shadow. png") ;
 o_b3_sh = evas_add_i mage_f r om_f i l e(evas, " bubbl e_shadow. png") ;

 o_b1 = evas_add_i mage_f r om_f i l e(evas, " bubbl e. png") ;
 o_b2 = evas_add_i mage_f r om_f i l e(evas, " bubbl e. png") ;
 o_b3 = evas_add_i mage_f r om_f i l e(evas, " bubbl e. png") ;

 o_t ext = evas_add_t ext (evas, " not epad" , 20, " . . . t he one you
l ove. ") ;
 evas_set _col or (evas, o_t ext , 0, 0, 0, 160) ;

 {

i nt w, h;

evas_get _i mage_si ze(evas, o_l ogo, &w, &h) ;
evas_move(evas, o_l ogo, (400 − w) / 2, 400 − h − 16) ;
evas_move(evas, o_l ogo_sh, ((400 − w) / 2) + 16, 400 − h − 16 + 16) ;
w = evas_get _t ext _wi dt h(evas, o_t ext) ;
h = evas_get _t ext _hei ght (evas, o_t ext) ;
evas_move(evas, o_t ext , (400 − w) / 2, 400 − h − 4) ;

 }

Evas Documentation Page 181

Evas Programmers Guide
By Carsten Haitzler, Copyright © 2001 Carsten Haitzler (The Rasterman)

 evas_show(evas, o_bg) ;
 evas_show(evas, o_l ogo_sh) ;
 evas_show(evas, o_l ogo) ;
 evas_show(evas, o_b1_sh) ;
 evas_show(evas, o_b2_sh) ;
 evas_show(evas, o_b3_sh) ;
 evas_show(evas, o_b1) ;
 evas_show(evas, o_b2) ;
 evas_show(evas, o_b3) ;
 evas_show(evas, o_t ext) ;

 evas_cal l back_add(evas, o_l ogo, CALLBACK_MOUSE_DOWN, mouse_down, NULL) ;
 evas_cal l back_add(evas, o_l ogo, CALLBACK_MOUSE_UP, mouse_up, NULL) ;
 evas_cal l back_add(evas, o_l ogo, CALLBACK_MOUSE_MOVE, mouse_move, NULL) ;
 evas_cal l back_add(evas, o_l ogo, CALLBACK_MOUSE_I N, mouse_i n, NULL) ;
 evas_cal l back_add(evas, o_l ogo, CALLBACK_MOUSE_OUT, mouse_out , NULL) ;
}

i nt
mai n(i nt ar gc, char * * ar gv)
{
 / * command l i ne par si ng * /
 {

i nt i ;

f or (i = 1; i < ar gc; i ++)
 {
 i f (! st r cmp(ar gv[i] , " sof t "))
 r ender _met hod = RENDER_METHOD_ALPHA_SOFTWARE;
 el se i f (! st r cmp(ar gv[i] , " x11"))
 r ender _met hod = RENDER_METHOD_BASI C_HARDWARE;
 el se i f (! st r cmp(ar gv[i] , " har d"))
 r ender _met hod = RENDER_METHOD_3D_HARDWARE;
 el se
 max_col or s = at oi (ar gv[i]) ;
 }

 }
 / * i ni t X * /
 e_di spl ay_i ni t (NULL) ;
 / * set up handl er s f or syst em si gnal s * /
 e_ev_si gnal _i ni t () ;
 / * set up t he event f i l t er * /
 e_event _f i l t er _i ni t () ;
 / * set up t he X event i nt er nal s * /
 e_ev_x_i ni t () ;

 / * pr ogr am does i t s dat a set up her e * /
 set up() ;
 / * cal l t he ani mat or once t o st ar t i t up * /
 e_t i meout (0, NULL) ;
 / * and now l oop f or ever handl i ng event s * /
 e_event _l oop() ;
}

Evas Documentation Page 182

