ephoto/src/bin/ephoto_filters.c

312 lines
9.6 KiB
C
Raw Normal View History

#include "ephoto.h"
static int
_normalize_color(int color)
{
if (color < 0)
return 0;
else if (color > 255)
return 255;
else
return color;
}
static int
_mul_color_alpha(int color, int alpha)
{
if (alpha > 0 && alpha < 255)
return (color * (255 / alpha));
else
return color;
}
static int
_demul_color_alpha(int color, int alpha)
{
if (alpha > 0 && alpha < 255)
return ((color * alpha) / 255);
else
return color;
}
void
ephoto_filter_blur(Evas_Object *main, Evas_Object *image)
{
unsigned int *im_data, *im_data_new, *p1, *p2;
int rad = 3;
int x, y, w, h, mx, my, mw, mh, mt, xx, yy;
int a, r, g, b;
int *as, *rs, *gs, *bs;
im_data = evas_object_image_data_get(elm_image_object_get(image), EINA_FALSE);
evas_object_image_size_get(elm_image_object_get(image), &w, &h);
im_data_new = malloc(sizeof(unsigned int) * w * h);
as = malloc(sizeof(int) * w);
rs = malloc(sizeof(int) * w);
gs = malloc(sizeof(int) * w);
bs = malloc(sizeof(int) * w);
for (y = 0; y < h; y++)
{
my = y - rad;
mh = (rad << 1) + 1;
if (my < 0)
{
mh += my;
my = 0;
}
if ((my + mh) > h)
{
mh = h - my;
}
p1 = im_data_new + (y * w);
memset(as, 0, w * sizeof(int));
memset(rs, 0, w * sizeof(int));
memset(gs, 0, w * sizeof(int));
memset(bs, 0, w * sizeof(int));
for (yy = 0; yy < mh; yy++)
{
p2 = im_data + ((yy + my) * w);
for (x = 0; x < w; x++)
{
as[x] += (*p2 >> 24) & 0xff;
rs[x] += (*p2 >> 16) & 0xff;
gs[x] += (*p2 >> 8) & 0xff;
bs[x] += *p2 & 0xff;
p2++;
}
}
if (w > ((rad << 1) + 1))
{
for (x = 0; x < w; x++)
{
a = 0;
r = 0;
g = 0;
b = 0;
mx = x - rad;
mw = (rad << 1) + 1;
if (mx < 0)
{
mw += mx;
mx = 0;
}
if ((mx + mw) > w)
{
mw = w - mx;
}
mt = mw * mh;
for (xx = mx; xx < (mw + mx); xx++)
{
a += as[xx];
r += rs[xx];
g += gs[xx];
b += bs[xx];
}
a = a / mt;
r = r / mt;
g = g / mt;
b = b / mt;
*p1 = (a << 24) | (r << 16) | (g << 8) | b;
p1 ++;
}
}
}
free(as);
free(rs);
free(gs);
free(bs);
ephoto_single_browser_image_data_update(main, image, EINA_TRUE, im_data_new, w, h);
}
void
ephoto_filter_sharpen(Evas_Object *main, Evas_Object *image)
{
unsigned int *im_data, *im_data_new, *p1, *p2;
int a, r, g, b, x, y, w, h;
int mul, mul2, tot;
int rad = 3;
im_data = evas_object_image_data_get(elm_image_object_get(image), EINA_FALSE);
evas_object_image_size_get(elm_image_object_get(image), &w, &h);
im_data_new = malloc(sizeof(unsigned int) * w * h);
mul = (rad * 4) + 1;
mul2 = rad;
tot = mul - (mul2 * 4);
for (y = 1; y < (h - 1); y ++)
{
p1 = im_data + 1 + (y * w);
p2 = im_data_new + 1 + (y * w);
for (x = 1; x < (w - 1); x++)
{
b = (int)((p1[0]) & 0xff) * 5;
g = (int)((p1[0] >> 8) & 0xff) * 5;
r = (int)((p1[0] >> 16) & 0xff) * 5;
a = (int)((p1[0] >> 24) & 0xff) * 5;
b -= (int)((p1[-1]) & 0xff);
g -= (int)((p1[-1] >> 8) & 0xff);
r -= (int)((p1[-1] >> 16) & 0xff);
a -= (int)((p1[-1] >> 24) & 0xff);
b -= (int)((p1[1]) & 0xff);
g -= (int)((p1[1] >> 8) & 0xff);
r -= (int)((p1[1] >> 16) & 0xff);
a -= (int)((p1[1] >> 24) & 0xff);
b -= (int)((p1[-w]) & 0xff);
g -= (int)((p1[-w] >> 8) & 0xff);
r -= (int)((p1[-w] >> 16) & 0xff);
a -= (int)((p1[-w] >> 24) & 0xff);
b -= (int)((p1[-w]) & 0xff);
g -= (int)((p1[-w] >> 8) & 0xff);
r -= (int)((p1[-w] >> 16) & 0xff);
a -= (int)((p1[-w] >> 24) & 0xff);
a = (a & ((~a) >> 16));
a = ((a | ((a & 256) - ((a & 256) >> 8))));
r = (r & ((~r) >> 16));
r = ((r | ((r & 256) - ((r & 256) >> 8))));
g = (g & ((~g) >> 16));
g = ((g | ((g & 256) - ((g & 256) >> 8))));
b = (b & ((~b) >> 16));
b = ((b | ((b & 256) - ((b & 256) >> 8))));
*p2 = (a << 24) | (r << 16) | (g << 8) | b;
p2++;
p1++;
}
}
ephoto_single_browser_image_data_update(main, image, EINA_TRUE, im_data_new, w, h);
}
void
ephoto_filter_black_and_white(Evas_Object *main, Evas_Object *image)
{
unsigned int *im_data, *im_data_new;
int gray, i, r, g, b, a, w, h;
im_data = evas_object_image_data_get(elm_image_object_get(image), EINA_FALSE);
evas_object_image_size_get(elm_image_object_get(image), &w, &h);
im_data_new = malloc(sizeof(unsigned int) * w * h);
for (i = 0; i < (w * h); i++)
{
b = (int)((im_data[i]) & 0xff);
g = (int)((im_data[i] >> 8) & 0xff);
r = (int)((im_data[i] >> 16) & 0xff);
a = (int)((im_data[i] >> 24) & 0xff);
b = _mul_color_alpha(b, a);
g = _mul_color_alpha(g, a);
r = _mul_color_alpha(r, a);
gray = (int)((0.3 * r) + (0.59 * g) + (0.11 * b));
if (a >= 0 && a < 255)
gray = (gray * a) / 255;
im_data_new[i] = (a << 24) | (gray << 16) | (gray << 8) | gray;
}
ephoto_single_browser_image_data_update(main, image, EINA_TRUE, im_data_new, w, h);
}
void
ephoto_filter_old_photo(Evas_Object *main, Evas_Object *image)
{
unsigned int *im_data, *im_data_new;
int i, r, rr, g, gg, b, bb, a, w, h;
im_data = evas_object_image_data_get(elm_image_object_get(image), EINA_FALSE);
evas_object_image_size_get(elm_image_object_get(image), &w, &h);
im_data_new = malloc(sizeof(unsigned int) * w * h);
for (i = 0; i < (w * h); i++)
{
b = (int)((im_data[i]) & 0xff);
g = (int)((im_data[i] >> 8) & 0xff);
r = (int)((im_data[i] >> 16) & 0xff);
a = (int)((im_data[i] >> 24) & 0xff);
b = _mul_color_alpha(b, a);
g = _mul_color_alpha(g, a);
r = _mul_color_alpha(r, a);
rr = (int)((r* .393) + (g*.769) + (b*.189));
rr = _normalize_color(rr);
gg = (int)((r* .349) + (g*.686) + (b*.168));
gg = _normalize_color(gg);
bb = (int)((r* .272) + (g*.534) + (b*.131));
bb = _normalize_color(bb);
bb = _demul_color_alpha(bb, a);
gg = _demul_color_alpha(gg, a);
rr = _demul_color_alpha(rr, a);
im_data_new[i] = (a << 24) | (rr << 16) | (gg << 8) | bb;
}
ephoto_single_browser_image_data_update(main, image, EINA_TRUE, im_data_new, w, h);
}
void
ephoto_filter_histogram_eq(Evas_Object *main, Evas_Object *image)
{
unsigned int *im_data, *im_data_new, *p1, *p2;
int x, y, w, h, i, hist[256], cdf[256];
int a, r, g, b, bb, gg, rr, norm, total;
float hh, s, v, nv, sum;
im_data = evas_object_image_data_get(elm_image_object_get(image), EINA_FALSE);
evas_object_image_size_get(elm_image_object_get(image), &w, &h);
im_data_new = malloc(sizeof(unsigned int) * w * h);
total = w * h;
for (i = 0; i < 256; i++)
hist[i] = 0;
for (y = 0; y < h; y++)
{
p1 = im_data + (y * w);
for (x = 0; x < w; x++)
{
b = (int)((*p1) & 0xff);
g = (int)((*p1 >> 8) & 0xff);
r = (int)((*p1 >> 16) & 0xff);
a = (int)((*p1 >> 24) & 0xff);
b = _mul_color_alpha(b, a);
g = _mul_color_alpha(g, a);
r = _mul_color_alpha(r, a);
evas_color_rgb_to_hsv(r, g, b, &hh, &s, &v);
norm = (int)round((double)v * (double)255);
hist[norm] += 1;
p1++;
}
}
sum = 0;
for (i = 0; i < 256; i++)
{
sum += ((double)hist[i] / (double)total);
cdf[i] = (int)round(sum * 255);
}
for (y = 0; y < h; y++)
{
p1 = im_data + (y * w);
p2 = im_data_new + (y * w);
for (x = 0; x < w; x++)
{
b = (int)((*p1) & 0xff);
g = (int)((*p1 >> 8) & 0xff);
r = (int)((*p1 >> 16) & 0xff);
a = (int)((*p1 >> 24) & 0xff);
b = _mul_color_alpha(b, a);
g = _mul_color_alpha(g, a);
r = _mul_color_alpha(r, a);
evas_color_rgb_to_hsv(r, g, b, &hh, &s, &v);
norm = (int)round((double)v * (double)255);
nv = (float)cdf[norm] / (float)255;
evas_color_hsv_to_rgb(hh, s, nv, &rr, &gg, &bb);
bb = _normalize_color(bb);
gg = _normalize_color(gg);
rr = _normalize_color(rr);
bb = _demul_color_alpha(bb, a);
gg = _demul_color_alpha(gg, a);
rr = _demul_color_alpha(rr, a);
*p2 = (a << 24) | (rr << 16) | (gg << 8) | bb;
p2++;
p1++;
}
}
ephoto_single_browser_image_data_update(main, image, EINA_TRUE, im_data_new, w, h);
}