summaryrefslogtreecommitdiff
path: root/src/lib/ector/software/ector_software_rasterizer.c
blob: d9b33512485d5d7324b84d6b18f0c850bfa702d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif

#include <Eina.h>
#include <Ector.h>
#include <software/Ector_Software.h>

#include "ector_private.h"
#include "ector_software_private.h"

#include "draw.h"

static void
_blend_color_argb(int count, const SW_FT_Span *spans, void *user_data)
{
   Span_Data *sd = user_data;
   uint32_t color, *buffer, *target;
   const int pix_stride = sd->raster_buffer->stride / 4;

   // multiply the color with mul_col if any
   color = DRAW_MUL4_SYM(sd->color, sd->mul_col);
   RGBA_Comp_Func_Solid comp_func = efl_draw_func_solid_span_get(sd->op, color);

   // move to the offset location
   buffer = sd->raster_buffer->pixels.u32 + ((pix_stride * sd->offy) + sd->offx);

    while (count--)
      {
          target = buffer + ((pix_stride * spans->y) + spans->x);
          comp_func(target, spans->len, color, spans->coverage);
          ++spans;
      }
}

static void
_blend_color_argb_with_maskA(int count, const SW_FT_Span *spans, void *user_data)
{
   Span_Data *sd = user_data;
   const int pix_stride = sd->raster_buffer->stride / 4;
   Ector_Software_Buffer_Base_Data *mask = sd->mask;

   // multiply the color with mul_col if any
   uint32_t color = DRAW_MUL4_SYM(sd->color, sd->mul_col);
   RGBA_Comp_Func_Solid comp_func = efl_draw_func_solid_span_get(sd->op, color);

   // move to the offset location
   uint32_t *buffer =
         sd->raster_buffer->pixels.u32 + ((pix_stride * sd->offy) + sd->offx);
   uint32_t *mbuffer = mask->pixels.u32;

   //Temp buffer for intermediate processing
   int tsize = sd->raster_buffer->generic->w;
   uint32_t *tbuffer = alloca(sizeof(uint32_t) * tsize);

   while (count--)
     {
        uint32_t *target = buffer + ((pix_stride * spans->y) + spans->x);
        uint32_t *mtarget =
              mbuffer + ((mask->generic->w * spans->y) + spans->x);
        uint32_t *temp = tbuffer;
        memset(temp, 0x00, sizeof(uint32_t) * spans->len);
        comp_func(temp, spans->len, color, spans->coverage);

        //masking
        for (int i = 0; i < spans->len; i++)
          {
             *temp = draw_mul_256(((*mtarget)>>24), *temp);
             int alpha = 255 - ((*temp) >> 24);
             *target = *temp + draw_mul_256(alpha, *target);
             ++temp;
             ++mtarget;
             ++target;
          }
        ++spans;
     }
}

static void
_blend_color_argb_with_maskInvA(int count, const SW_FT_Span *spans, void *user_data)
{
   Span_Data *sd = user_data;
   const int pix_stride = sd->raster_buffer->stride / 4;
   Ector_Software_Buffer_Base_Data *mask = sd->mask;

   // multiply the color with mul_col if any
   uint32_t color = DRAW_MUL4_SYM(sd->color, sd->mul_col);
   RGBA_Comp_Func_Solid comp_func = efl_draw_func_solid_span_get(sd->op, color);

   // move to the offset location
   uint32_t *buffer =
         sd->raster_buffer->pixels.u32 + ((pix_stride * sd->offy) + sd->offx);
   uint32_t *mbuffer = mask->pixels.u32;

   //Temp buffer for intermediate processing
   int tsize = sd->raster_buffer->generic->w;
   uint32_t *tbuffer = alloca(sizeof(uint32_t) * tsize);

   while (count--)
     {
        uint32_t *target = buffer + ((pix_stride * spans->y) + spans->x);
        uint32_t *mtarget =
              mbuffer + ((mask->generic->w * spans->y) + spans->x);
        uint32_t *temp = tbuffer;
        memset(temp, 0x00, sizeof(uint32_t) * spans->len);
        comp_func(temp, spans->len, color, spans->coverage);

        //masking
        for (int i = 0; i < spans->len; i++)
          {
             if (*mtarget)
                *temp = draw_mul_256((255 - ((*mtarget)>>24)), *temp);
             int alpha = 255 - ((*temp) >> 24);
             *target = *temp + draw_mul_256(alpha, *target);
             ++temp;
             ++mtarget;
             ++target;
          }
        ++spans;
     }
}

#define BLEND_GRADIENT_BUFFER_SIZE 2048

typedef void (*src_fetch) (unsigned int *buffer, Span_Data *data, int y, int x, int length);

static void
_blend_gradient(int count, const SW_FT_Span *spans, void *user_data)
{
   RGBA_Comp_Func comp_func;
   Span_Data *data = (Span_Data *)(user_data);
   src_fetch fetchfunc = NULL;
   unsigned int buffer[BLEND_GRADIENT_BUFFER_SIZE], *target, *destbuffer;
   int length, l;
   const int pix_stride = data->raster_buffer->stride / 4;

   // FIXME: Get the proper composition function using ,color, ECTOR_OP etc.
   if (data->type == LinearGradient) fetchfunc = &fetch_linear_gradient;
   if (data->type == RadialGradient) fetchfunc = &fetch_radial_gradient;

   if (!fetchfunc)
     return;

   comp_func = efl_draw_func_span_get(data->op, data->mul_col, data->gradient->alpha);

   // move to the offset location
   destbuffer = data->raster_buffer->pixels.u32 + ((pix_stride * data->offy) + data->offx);

   while (count--)
     {
        target = destbuffer + ((pix_stride * spans->y) + spans->x);
        length = spans->len;
        while (length)
          {
             l = MIN(length, BLEND_GRADIENT_BUFFER_SIZE);
             fetchfunc(buffer, data, spans->y, spans->x, l);
             comp_func(target, buffer, l, data->mul_col, spans->coverage);
             target += l;
             length -= l;
          }
        ++spans;
     }
}

/*!
    \internal
    spans must be sorted on y
*/
static const
SW_FT_Span *_intersect_spans_rect(const Eina_Rectangle *clip,
                                  const SW_FT_Span *spans,
                                  const SW_FT_Span *end,
                                  SW_FT_Span **out_spans,
                                  int available)
{
   SW_FT_Span *out = *out_spans;
   short minx, miny, maxx, maxy;
   minx = clip->x;
   miny = clip->y;
   maxx = minx + clip->w - 1;
   maxy = miny + clip->h - 1;

   while (available && spans < end )
     {
        if (spans->y > maxy)
          {
             spans = end;// update spans so that we can breakout
             break;
          }
        if (spans->y < miny
            || spans->x > maxx
            || spans->x + spans->len <= minx)
          {
             ++spans;
             continue;
          }
        if (spans->x < minx)
          {
             out->len = MIN(spans->len - (minx - spans->x), maxx - minx + 1);
             out->x = minx;
          }
        else
          {
             out->x = spans->x;
             out->len = MIN(spans->len, (maxx - spans->x + 1));
          }
        if (out->len != 0)
          {
             out->y = spans->y;
             out->coverage = spans->coverage;
             ++out;
          }
        ++spans;
        --available;
     }

   *out_spans = out;
   return spans;
}

static inline int
_div_255(int x) { return (x + (x>>8) + 0x80) >> 8; }

static const
SW_FT_Span *_intersect_spans_region(const Shape_Rle_Data *clip,
                                    int *currentClip,
                                    const SW_FT_Span *spans,
                                    const SW_FT_Span *end,
                                    SW_FT_Span **out_spans,
                                    int available)
{
   SW_FT_Span *out = *out_spans;
   int sx1, sx2, cx1, cx2, x, len;

   const SW_FT_Span *clipSpans = clip->spans + *currentClip;
   const SW_FT_Span *clipEnd = clip->spans + clip->size;

   while (available && spans < end )
     {
        if (clipSpans >= clipEnd)
          {
             spans = end;
             break;
          }
        if (clipSpans->y > spans->y)
          {
             ++spans;
             continue;
          }
        if (spans->y != clipSpans->y)
          {
             ++clipSpans;
             continue;
          }
        //assert(spans->y == clipSpans->y);
        sx1 = spans->x;
        sx2 = sx1 + spans->len;
        cx1 = clipSpans->x;
        cx2 = cx1 + clipSpans->len;

        if (cx1 < sx1 && cx2 < sx1)
          {
             ++clipSpans;
             continue;
          }
        else if (sx1 < cx1 && sx2 < cx1)
          {
             ++spans;
             continue;
          }
        x = MAX(sx1, cx1);
        len = MIN(sx2, cx2) - x;
        if (len)
          {
             out->x = MAX(sx1, cx1);
             out->len = MIN(sx2, cx2) - out->x;
             out->y = spans->y;
             out->coverage = _div_255(spans->coverage * clipSpans->coverage);
             ++out;
             --available;
          }
        if (sx2 < cx2)
          {
             ++spans;
          }
        else
          {
             ++clipSpans;
          }
     }

   *out_spans = out;
   *currentClip = clipSpans - clip->spans;
   return spans;
}

static void
_span_fill_clipRect(int span_count, const SW_FT_Span *spans, void *user_data)
{
   const int NSPANS = 256;
   int clip_count, i;
   SW_FT_Span cspans[NSPANS];
   Span_Data *fill_data = (Span_Data *) user_data;
   Clip_Data clip = fill_data->clip;
   SW_FT_Span *clipped;
   Eina_Rectangle *rect;
   Eina_Rectangle tmp_rect;

   clip_count = eina_array_count(clip.clips);

   for (i = 0; i < clip_count; i++)
     {
        rect = (Eina_Rectangle *)eina_array_data_get(clip.clips, i);

        // invert transform the offset
        tmp_rect.x = rect->x - fill_data->offx;
        tmp_rect.y = rect->y - fill_data->offy;
        tmp_rect.w = rect->w;
        tmp_rect.h = rect->h;
        const SW_FT_Span *end = spans + span_count;

        while (spans < end)
          {
             clipped = cspans;
             spans = _intersect_spans_rect(&tmp_rect, spans, end, &clipped, NSPANS);
             if (clipped - cspans)
               fill_data->unclipped_blend(clipped - cspans, cspans, fill_data);
          }
     }
}

static void
_span_fill_clipPath(int span_count, const SW_FT_Span *spans, void *user_data)
{
   const int NSPANS = 256;
   int current_clip = 0;
   SW_FT_Span cspans[NSPANS];
   Span_Data *fill_data = (Span_Data *) user_data;
   Clip_Data clip = fill_data->clip;
   SW_FT_Span *clipped;

   // FIXME: Take clip path offset into account.
   const SW_FT_Span *end = spans + span_count;
   while (spans < end)
     {
        clipped = cspans;
        spans = _intersect_spans_region(clip.path, &current_clip, spans, end, &clipped, NSPANS);
        if (clipped - cspans)
          fill_data->unclipped_blend(clipped - cspans, cspans, fill_data);
     }
}

static void
_adjust_span_fill_methods(Span_Data *spdata)
{
   //Blending Function
   switch(spdata->type)
     {
        case None:
          spdata->unclipped_blend = NULL;
          break;
        case Solid:
          {
             if (spdata->mask)
                {
                   if (spdata->mask_op == 2)
                     spdata->unclipped_blend = &_blend_color_argb_with_maskInvA;
                   else
                     spdata->unclipped_blend = &_blend_color_argb_with_maskA;
                }
             else
                spdata->unclipped_blend = &_blend_color_argb;
           }
          break;
        case LinearGradient:
        case RadialGradient:
          spdata->unclipped_blend = &_blend_gradient;
          break;
     }

   // Clipping Function
   if (spdata->clip.enabled)
     {
        if (spdata->clip.type == 0)
          spdata->blend = &_span_fill_clipRect;
        else
          spdata->blend = &_span_fill_clipPath;
     }
   else
     spdata->blend = spdata->unclipped_blend;
}

void ector_software_thread_init(Ector_Software_Thread *thread)
{
   // initialize the rasterizer and stroker
   sw_ft_grays_raster.raster_new(&thread->raster);

   SW_FT_Stroker_New(&thread->stroker);
   SW_FT_Stroker_Set(thread->stroker, 1 << 6,
                     SW_FT_STROKER_LINECAP_BUTT, SW_FT_STROKER_LINEJOIN_MITER, 0);
}

void ector_software_rasterizer_init(Software_Rasterizer *rasterizer)
{
   //initialize the span data.
   rasterizer->fill_data.clip.enabled = EINA_FALSE;
   rasterizer->fill_data.unclipped_blend = 0;
   rasterizer->fill_data.blend = 0;
   efl_draw_init();
   ector_software_gradient_init();
}

void ector_software_thread_shutdown(Ector_Software_Thread *thread)
{
   sw_ft_grays_raster.raster_done(thread->raster);
   SW_FT_Stroker_Done(thread->stroker);
}

void ector_software_rasterizer_stroke_set(Ector_Software_Thread *thread,
                                          Software_Rasterizer *rasterizer EINA_UNUSED, double width,
                                          Efl_Gfx_Cap cap_style, Efl_Gfx_Join join_style,
                                          Eina_Matrix3 *m)
{
   SW_FT_Stroker_LineCap cap;
   SW_FT_Stroker_LineJoin join;
   int stroke_width;
   double scale_factor = 1.0;
   if (m)
     {
        // get the minimum scale factor from matrix
        scale_factor =  m->xx < m->yy ? m->xx : m->yy;
     }
   width = width * scale_factor;
   width = width/2.0; // as free type uses it as the radius of the
                      // pen not the diameter.
   // convert to freetype co-ordinate
   stroke_width = (int)(width * 64);

   switch (cap_style)
     {
        case EFL_GFX_CAP_SQUARE:
          cap = SW_FT_STROKER_LINECAP_SQUARE;
          break;
        case EFL_GFX_CAP_ROUND:
          cap = SW_FT_STROKER_LINECAP_ROUND;
          break;
        default:
          cap = SW_FT_STROKER_LINECAP_BUTT;
          break;
     }

   switch (join_style)
     {
        case EFL_GFX_JOIN_BEVEL:
          join = SW_FT_STROKER_LINEJOIN_BEVEL;
          break;
        case EFL_GFX_JOIN_ROUND:
          join = SW_FT_STROKER_LINEJOIN_ROUND;
          break;
        default:
          join = SW_FT_STROKER_LINEJOIN_MITER;
          break;
     }
   SW_FT_Stroker_Set(thread->stroker, stroke_width, cap, join, 0);
}

static void
_rle_generation_cb( int count, const SW_FT_Span*  spans,void *user)
{
   Shape_Rle_Data *rle = (Shape_Rle_Data *) user;
   int newsize = rle->size + count;

   // allocate enough memory for new spans
   // alloc is required to prevent free and reallocation
   // when the rle needs to be regenerated because of attribute change.
   if (rle->alloc < newsize)
     {
        rle->spans = (SW_FT_Span *) realloc(rle->spans, newsize * sizeof(SW_FT_Span));
        rle->alloc = newsize;
     }

   // copy the new spans to the allocated memory
   SW_FT_Span *lastspan = (rle->spans + rle->size);
   memcpy(lastspan,spans, count * sizeof(SW_FT_Span));

   // update the size
   rle->size = newsize;
}

Shape_Rle_Data *
ector_software_rasterizer_generate_rle_data(Ector_Software_Thread *thread,
                                            Software_Rasterizer *rasterizer EINA_UNUSED,
                                            SW_FT_Outline *outline)
{
   int i, rle_size;
   int l = 0, t = 0, r = 0, b = 0;
   Shape_Rle_Data *rle_data = (Shape_Rle_Data *) calloc(1, sizeof(Shape_Rle_Data));
   SW_FT_Raster_Params params;
   SW_FT_Span* span;

   params.flags = SW_FT_RASTER_FLAG_DIRECT | SW_FT_RASTER_FLAG_AA ;
   params.gray_spans = &_rle_generation_cb;
   params.user = rle_data;
   params.source = outline;

   sw_ft_grays_raster.raster_render(thread->raster, &params);

   // update RLE bounding box.
   span = rle_data->spans;
   rle_size = rle_data->size;
   if (rle_size)
     {
        t = span[0].y;
        b = span[rle_size-1].y;
        for (i = 0; i < rle_size; i++)
          {
             if (span[i].x < l) l = span[i].x;
             if (span[i].x + span[i].len > r) r = span[i].x + span[i].len;
          }
        rle_data->bbox.x = l;
        rle_data->bbox.y = t;
        rle_data->bbox.w = r - l;
        rle_data->bbox.h = b - t + 1;
     }
   return rle_data;
}

Shape_Rle_Data *
ector_software_rasterizer_generate_stroke_rle_data(Ector_Software_Thread *thread,
                                                   Software_Rasterizer *rasterizer,
                                                   SW_FT_Outline *outline,
                                                   Eina_Bool closePath)
{
   uint32_t points,contors;
   Shape_Rle_Data *rle_data;
   SW_FT_Outline strokeOutline = { 0, 0, NULL, NULL, NULL, 0 };

   SW_FT_Stroker_ParseOutline(thread->stroker, outline, !closePath);
   SW_FT_Stroker_GetCounts(thread->stroker,&points, &contors);

   strokeOutline.points = (SW_FT_Vector *) calloc(points, sizeof(SW_FT_Vector));
   strokeOutline.tags = (char *) calloc(points, sizeof(char));
   strokeOutline.contours = (short *) calloc(contors, sizeof(short));

   SW_FT_Stroker_Export(thread->stroker, &strokeOutline);

   rle_data = ector_software_rasterizer_generate_rle_data(thread, rasterizer, &strokeOutline);

   // cleanup the outline data.
   free(strokeOutline.points);
   free(strokeOutline.tags);
   free(strokeOutline.contours);

   return rle_data;
}

void
ector_software_rasterizer_destroy_rle_data(Shape_Rle_Data *rle)
{
   if (rle)
     {
        if (rle->spans)
          free(rle->spans);
        free(rle);
     }
}

static
void _setup_span_fill_matrix(Software_Rasterizer *rasterizer)
{
   if (rasterizer->transform)
     eina_matrix3_inverse(rasterizer->transform, &rasterizer->fill_data.inv);
   else
     eina_matrix3_identity(&rasterizer->fill_data.inv);
}

void
ector_software_rasterizer_transform_set(Software_Rasterizer *rasterizer, Eina_Matrix3 *t)
{
   rasterizer->transform = t;
}

void
ector_software_rasterizer_clip_rect_set(Software_Rasterizer *rasterizer, Eina_Array *clips)
{
   if (clips)
     {
        rasterizer->fill_data.clip.clips = clips;
        rasterizer->fill_data.clip.type = 0;
        rasterizer->fill_data.clip.enabled = EINA_TRUE;
     }
   else
     {
        rasterizer->fill_data.clip.clips = NULL;
        rasterizer->fill_data.clip.type = 0;
        rasterizer->fill_data.clip.enabled = EINA_FALSE;
     }
}

void
ector_software_rasterizer_clip_shape_set(Software_Rasterizer *rasterizer, Shape_Rle_Data *clip)
{
   if (clip)
     {
        rasterizer->fill_data.clip.path = clip;
        rasterizer->fill_data.clip.type = 1;
        rasterizer->fill_data.clip.enabled = EINA_TRUE;
     }
   else
     {
        rasterizer->fill_data.clip.path = NULL;
        rasterizer->fill_data.clip.type = 0;
        rasterizer->fill_data.clip.enabled = EINA_FALSE;
     }
}

void
ector_software_rasterizer_color_set(Software_Rasterizer *rasterizer, int r, int g, int b, int a)
{
   rasterizer->fill_data.color = DRAW_ARGB_JOIN(a, r, g, b);
   rasterizer->fill_data.type = Solid;
}

void ector_software_rasterizer_linear_gradient_set(Software_Rasterizer *rasterizer,
                                                   Ector_Renderer_Software_Gradient_Data *linear)
{
   rasterizer->fill_data.gradient = linear;
   rasterizer->fill_data.type = LinearGradient;
}

void
ector_software_rasterizer_radial_gradient_set(Software_Rasterizer *rasterizer,
                                              Ector_Renderer_Software_Gradient_Data *radial)
{
   rasterizer->fill_data.gradient = radial;
   rasterizer->fill_data.type = RadialGradient;
}

void
ector_software_rasterizer_draw_rle_data(Software_Rasterizer *rasterizer,
                                        int x, int y, uint32_t mul_col,
                                        Efl_Gfx_Render_Op op, Shape_Rle_Data* rle,
                                        Ector_Buffer *mask,
                                        int mask_op)
{
   if (!rle) return;

   rasterizer->fill_data.offx = x;
   rasterizer->fill_data.offy = y;
   rasterizer->fill_data.mul_col = mul_col;
   rasterizer->fill_data.op = op;
   rasterizer->fill_data.mask =
         mask ? efl_data_scope_get(mask, ECTOR_SOFTWARE_BUFFER_BASE_MIXIN) : NULL;
   rasterizer->fill_data.mask_op = mask_op;

   _setup_span_fill_matrix(rasterizer);
   _adjust_span_fill_methods(&rasterizer->fill_data);

   if (rasterizer->fill_data.blend)
     rasterizer->fill_data.blend(rle->size, rle->spans, &rasterizer->fill_data);
}