1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

import eina_types;
import efl_gfx_types;
mixin Efl.Gfx.Path
{
[[EFL graphics path object interface]]
methods {
@property path {
[[Set the list of commands and points to be used to create the
content of path.
See \@ref efl_gfx_path interface for how to create a command list.
@since 1.18
]]
set {
}
get {
}
values {
op: ptr(const(Efl.Gfx.Path_Command_Type)); [[Command list]]
points: ptr(const(double)); [[Point list]]
}
}
@property length {
[[Path length property]]
get {
}
values {
commands: uint; [[Commands]]
points: uint; [[Points]]
}
}
@property current {
[[Current point coordinates]]
get {
}
values {
x: double; [[X coordinate of the current point.]]
y: double; [[Y coordinate of the current point.]]
}
}
@property current_ctrl {
[[Current control point coordinates]]
get {
}
values {
x: double; [[X coordinate of control point.]]
y: double; [[Y coordinate of control point.]]
}
}
/* FIXME: Return a new object!!! */
copy_from {
[[Copy the path data from the object specified.
@since 1.18
]]
params {
@in dup_from: const(Efl.Object); [[Shape object from where data will be copied.]]
}
}
bounds_get @const {
[[Compute and return the bounding box of the currently set path
@since 1.18
]]
params {
@out r: Eina.Rect; [[Contain the bounding box of the currently set path]]
}
}
reset {
[[Reset the path data of the path object.
@since 1.18
]]
}
append_move_to {
[[Moves the current point to the given point,
implicitly starting a new subpath and closing the previous one.
See also @.append_close.
@since 1.18
]]
params {
@in x: double; [[X coordinate of the current point.]]
@in y: double; [[Y coordinate of the current point.]]
}
}
append_line_to {
[[Adds a straight line from the current position to the given end point.
After the line is drawn, the current position is updated to be at the
end point of the line.
If no current position present, it draws a line to itself, basically
a point.
See also @.append_move_to.
@since 1.18
]]
params {
@in x: double; [[X coordinate of end point of the line.]]
@in y: double; [[Y coordinate of end point of the line.]]
}
}
append_quadratic_to {
[[Adds a quadratic Bezier curve between the current position and the
given end point (x,y) using the control points specified by (ctrl_x,
ctrl_y). After the path is drawn, the current position is updated to
be at the end point of the path.
@since 1.18
]]
params {
@in x: double; [[X coordinate of end point of the line.]]
@in y: double; [[Y coordinate of end point of the line.]]
@in ctrl_x: double; [[X coordinate of control point.]]
@in ctrl_y: double; [[Y coordinate of control point.]]
}
}
append_squadratic_to {
[[Same as efl_gfx_path_append_quadratic_to() api only difference is
that it uses the current control point to draw the bezier.
See also @.append_quadratic_to.
@since 1.18
]]
params {
@in x: double; [[X coordinate of end point of the line.]]
@in y: double; [[Y coordinate of end point of the line.]]
}
}
append_cubic_to {
[[Adds a cubic Bezier curve between the current position and the
given end point (x,y) using the control points specified by
(ctrl_x0, ctrl_y0), and (ctrl_x1, ctrl_y1). After the path is drawn,
the current position is updated to be at the end point of the path.
@since 1.18
]]
params {
@in ctrl_x0: double; [[X coordinate of 1st control point.]]
@in ctrl_y0: double; [[Y coordinate of 1st control point.]]
@in ctrl_x1: double; [[X coordinate of 2nd control point.]]
@in ctrl_y1: double; [[Y coordinate of 2nd control point.]]
@in x: double; [[X coordinate of end point of the line.]]
@in y: double; [[Y coordinate of end point of the line.]]
}
}
append_scubic_to {
[[Same as efl_gfx_path_append_cubic_to() api only difference is that it
uses the current control point to draw the bezier.
See also @.append_cubic_to.
@since 1.18
]]
params {
@in x: double; [[X coordinate of end point of the line.]]
@in y: double; [[Y coordinate of end point of the line.]]
@in ctrl_x: double; [[X coordinate of 2nd control point.]]
@in ctrl_y: double; [[Y coordinate of 2nd control point.]]
}
}
append_arc_to {
[[Append an arc that connects from the current point int the point list
to the given point (x,y). The arc is defined by the given radius in
xdirection (rx) and radius in y direction (ry).
Use this api if you know the end point's of the arc otherwise use
more convenient function @.append_arc.
@since 1.18
]]
params {
@in x: double; [[X coordinate of end point of the arc.]]
@in y: double; [[Y coordinate of end point of the arc.]]
@in rx: double; [[Radius of arc in x direction.]]
@in ry: double; [[Radius of arc in y direction.]]
@in angle: double; [[Xaxis rotation , normally 0.]]
@in large_arc: bool; [[Defines whether to draw the larger arc or
smaller arc joining two point.]]
@in sweep: bool; [[Defines whether the arc will be drawn
counterclockwise or clockwise from current point
to the end point taking into account the large_arc
property.]]
}
}
append_arc {
[[Append an arc that enclosed in the given rectangle (x, y, w, h).
The angle is defined in counter clock wise , use ve angle for clockwise arc.
@since 1.18
]]
params {
@in x: double; [[X coordinate of the rect.]]
@in y: double; [[Y coordinate of the rect.]]
@in w: double; [[Width of the rect.]]
@in h: double; [[Height of the rect.]]
@in start_angle: double; [[Angle at which the arc will start]]
@in sweep_length: double; [[@ Length of the arc.]]
}
}
append_close {
[[Closes the current subpath by drawing a line to the beginning of the
subpath, automatically starting a new path. The current point of the
new path is (0, 0).
If the subpath does not contain any points, this function does nothing.
@since 1.18
]]
}
append_circle {
[[Append a circle with given center and radius.
@since 1.18
]]
params {
@in x: double; [[X coordinate of the center of the circle.]]
@in y: double; [[Y coordinate of the center of the circle.]]
@in radius: double; [[Radius of the circle.]]
}
}
append_rect {
[[Append the given rectangle with rounded corner to the path.
The xr and yr arguments specify the radii of the ellipses defining the
corners of the rounded rectangle.
xr and yr are specified in terms of width and height respectively.
If xr and yr are 0, then it will draw a rectangle without rounded
corner.
@since 1.18
]]
params {
@in x: double; [[X coordinate of the rectangle.]]
@in y: double; [[Y coordinate of the rectangle.]]
@in w: double; [[Width of the rectangle.]]
@in h: double; [[Height of the rectangle.]]
@in rx: double; [[The x radius of the rounded corner and should be
in range [ 0 to w/2 ]
]]
@in ry: double; [[The y radius of the rounded corner and should be
in range [ 0 to h/2 ]
]]
}
}
append_svg_path {
[[Append SVG path data]]
params {
@in svg_path_data: string; [[SVG path data to append]]
}
}
interpolate {
[[Creates intermediary path partway between two paths
Sets the points of the $obj as the linear interpolation of the points
in the $from and $to paths. The path's x,y position and control
point coordinates are likewise interpolated.
The $from and $to paths must not already have equivalent points,
and $to must contain at least as many points as $from, else the
function returns $false with no interpolation performed. If $to
has more points than $from, the excess points are ignored.
]]
return: bool; [[$true on success, $false otherwise]]
params {
@in from: const(Efl.Object); [[Source path]]
@in to: const(Efl.Object); [[Destination path]]
@in pos_map: double; [[Position map in range 0.0 to 1.0]]
}
}
equal_commands {
[[Equal commands in object]]
return: bool; [[True on success, $false otherwise]]
params {
@in with: const(Efl.Object); [[Object]]
}
}
}
events {
changed: Efl.Gfx.Path_Change_Event; [[Graphics path was changed.]]
}
}
