summaryrefslogtreecommitdiff
path: root/src/lib/eina/eina_inlist.h
blob: 25260d1afaf4bf1766958bbdee81cb32570ec983 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
/* EINA - EFL data type library
 * Copyright (C) 2002-2008 Carsten Haitzler, Vincent Torri
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library;
 * if not, see <http://www.gnu.org/licenses/>.
 */

#ifndef EINA_INLIST_H_
#define EINA_INLIST_H_

#include "eina_types.h"
#include "eina_iterator.h"
#include "eina_accessor.h"
#include <stddef.h>

/**
 * @page eina_inlist_01_example_page Eina_Inlist basic usage
 * @dontinclude eina_inlist_01.c
 *
 * To see the full source for this example, click here: @ref
 * eina_inlist_01_c
 *
 * As explained before, inline lists mean its nodes pointers are part of same
 * memory block/blob. This is done by using the macro @ref EINA_INLIST inside the
 * data structure that will be used:
 *
 * @skip struct
 * @until };
 *
 * The resulting node representing this struct can be exemplified by the
 * following picture:
 *
 * @image html eina_inlist-node_eg1-my-struct.png
 * @image rtf eina_inlist-node_eg1-my-struct.png
 * @image latex eina_inlist-node_eg1-my-struct.eps
 *
 * Let's define a comparison function that will be used later during the
 * sorting of the list:
 *
 * @skip int
 * @until }
 *
 * The @ref Eina_Inlist can be used exactly the same way as @ref Eina_List when
 * appending, prepending and removing items. But since we already have the node
 * pointers inside the structure, they need to be retrieved with the macro @ref
 * EINA_INLIST_GET :
 *
 * @skip malloc
 * @until append
 *
 * Notice that @ref eina_inlist_append always receives the head of the list as
 * first argument, and its return value should be used as the list pointer
 * (head):
 *
 * @skip malloc
 * @until append
 *
 * After appending 3 items, the list now should look similar to this:
 *
 * @image html eina_inlist-node_eg1-inlist.png
 * @image rtf eina_inlist-node_eg1-inlist.png
 * @image latex eina_inlist-node_eg1-inlist.eps "" width=\textwidth
 *
 * The macro @ref EINA_INLIST_FOREACH can be used to iterate over the list:
 *
 * @skip printf
 * @until cur->a
 *
 * @ref eina_inlist_promote(), @ref eina_inlist_demote(), @ref
 * eina_inlist_append_relative() and similar functions all work in the same way
 * as the @ref Eina_List :
 *
 * @skip eina_inlist_promote
 * @until eina_inlist_demote
 *
 * Now let's use the @c sort_cb function declared above to sort our list:
 *
 * @skipline eina_inlist_sort
 *
 * Removing an element from the inlist is also similar to @ref Eina_List :
 *
 * @skip inlist_remove
 * @until free
 *
 * Another way of walking through the inlist.
 *
 * @skip for
 * @until }
 *
 * Notice that in the previous piece of code, since we only have the pointers to
 * the inlist nodes, we have to use the @ref EINA_INLIST_CONTAINER_GET macro
 * that will return the pointer to the entire structure. Of course, in this case
 * it is the same as the list pointer, since the @ref EINA_INLIST macro was used
 * in the beginning of the structure.
 *
 * Now to finish this example, lets delete this list:
 *
 * @skip while
 * @until }
 */

/**
 * @page eina_inlist_02_example_page Eina_Inlist advanced usage - lists and inlists
 * @dontinclude eina_inlist_02.c
 *
 * This example describes the usage of @ref Eina_Inlist mixed with @ref
 * Eina_List . We create and add elements to an inlist, and the even members
 * are also added to a normal list. Later we remove the elements divisible by 3
 * from this normal list.
 *
 * The struct that is going to be used is the same used in @ref
 * eina_inlist_01_example_page , since we still need the @ref EINA_INLIST macro to
 * declare the inlist node info:
 *
 * @skip struct
 * @until };
 *
 * The resulting node representing this struct can be exemplified by the
 * following picture:
 *
 * @image html eina_inlist-node_eg2-my-struct.png
 * @image rtf eina_inlist-node_eg2-my-struct.png
 * @image latex eina_inlist-node_eg2-my-struct.eps
 *
 * Now we need some pointers and auxiliary variables that will help us iterate on
 * the lists:
 *
 * @skip struct
 * @until l_next;
 *
 * Allocating 100 elements and putting them into an inlist, and the even
 * elements also go to the normal list:
 *
 * @skip for
 * @until }
 *
 * After this point, what we have are two distinct lists that share some
 * elements. The first list (inlist) is defined by the pointers inside the
 * elements data structure, while the second list (normal list) has its own node
 * data structure that is kept outside of the elements.
 *
 * The two lists, sharing some elements, can be represented by the following
 * picture:
 *
 * @htmlonly
 * <img src="eina_inlist-node_eg2-list-inlist.png" style="max-width: 100%;"/>
 * @endhtmlonly
 * @image rtf eina_inlist-node_eg2-list-inlist.png
 * @image latex eina_inlist-node_eg2-list-inlist.eps "" width=\textwidth
 *
 * Accessing both lists is done normally, as if they didn't have any elements in
 * common:
 *
 * @skip printf
 * @until eina_list_count
 *
 * We can remove elements from the normal list, but we just don't free them
 * because they are still stored in the inlist:
 *
 * @skip EINA_LIST_FOREACH_SAFE
 * @until eina_list_count
 *
 * To finish this example, we want to free both lists, we can't just free all
 * elements on the second list (normal list) because they are still being used
 * in the inlist. So we first discard the normal list without freeing its
 * elements, then we free all elements in the inlist (that contains all elements
 * allocated until now):
 *
 * @skip eina_list_free
 * @until }
 *
 * Here is the full source code for this example: @ref eina_inlist_02_c
 */

/**
 * @page eina_inlist_03_example_page Eina_Inlist advanced usage - multi-inlists
 * @dontinclude eina_inlist_03.c
 *
 * This example describes the usage of multiple inlists storing the same data.
 * It means that some data may appear in more than one inlist at the same time.
 * We will demonstrate this by creating an inlist with 100 numbers, and adding
 * the odd numbers to the second inlist, then remove the numbers divisible by 3
 * from the second list.
 *
 * To accomplish this, it is necessary to have two inlist pointers in the struct
 * that is going to be stored. We are using the default inlist member @ref
 * EINA_INLIST, and adding another member @c even that is of type @ref
 * Eina_Inlist too:
 *
 * @skip struct
 * @until };
 *
 * The representation for this struct is:
 *
 * @image html eina_inlist-node_eg3-my-struct.png
 * @image rtf eina_inlist-node_eg3-my-struct.png
 * @image latex eina_inlist-node_eg3-my-struct.eps
 *
 * And we will define some convenience macros that are equivalent to @ref
 * EINA_INLIST_GET and @ref EINA_INLIST_CONTAINER_GET :
 *
 * @skip define
 * @until offsetof
 *
 * We need two pointers, one for each list, and a pointer that will be used as
 * an iterator:
 *
 * @skipline Eina_Inlist
 *
 * Now we allocate and add to the first list every number from 0 to 99. These
 * nodes data also have the @ref Eina_Inlist node info for the second list (@c
 * even). We will use them to add just the even numbers to the second list, the
 * @c list_even. Also notice that we are using our macro @c EVEN_INLIST_GET to
 * get the pointer to the even list node info:
 *
 * @skip for
 * @until }
 *
 * And the resulting lists will be as follow:
 *
 * @htmlonly
 * <img src="eina_inlist-node_eg3-two-inlists.png" style="max-width: 100%;"/>
 * @endhtmlonly
 * @image rtf eina_inlist-node_eg3-two-inlists.png
 * @image latex eina_inlist-node_eg3-two-inlists.eps "" width=\textwidth
 *
 * For the first list, we can use the macro @ref EINA_INLIST_FOREACH to iterate
 * over its elements:
 *
 * @skip FOREACH
 * @until printf
 *
 * But for the second list, we have to do it manually. Of course we could create
 * a similar macro to @ref EINA_INLIST_FOREACH, but since this macro is more
 * complex than the other two and we are using it only once, it's better to just
 * do it manually:
 *
 * @skip for
 * @until }
 *
 * Let's just check that the two lists have the expected number of elements:
 *
 * @skip list count
 * @until list_even count
 *
 * And removing the numbers divisible by 3 only from the second list:
 *
 * @skip itr
 * @until list_even count
 *
 * Now that we don't need the two lists anymore, we can just free all the items.
 * Since all of the allocated data was put into the first list, and both lists
 * are made of pointers to inside the data structures, we can free only the
 * first list (that contains all the elements) and the second list will be gone
 * with it:
 *
 * @skip while
 * @until free
 *
 * To see the full source code for this example, click here: @ref
 * eina_inlist_03_c
 *
 */

/**
 * @page eina_inlist_01_c eina_inlist_01.c Eina_Inlist basic usage source
 * @include eina_inlist_01.c
 */

/**
 * @page eina_inlist_02_c eina_inlist_02.c Eina_Inlist advanced usage - lists and inlists source
 * @include eina_inlist_02.c
 */

/**
 * @page eina_inlist_03_c eina_inlist_03.c Eina_Inlist advanced usage - multi-inlists source
 * @include eina_inlist_03.c
 */

/**
 * @addtogroup Eina_Inline_List_Group Inline List
 *
 * @brief These functions provide inline list management.
 *
 * Inline lists mean its nodes pointers are part of same memory as
 * data. This has the benefit of fragmenting memory less and avoiding
 * @c node->data indirection, but has the drawback of higher cost for some
 * common operations like count and sort.
 *
 * It is possible to have inlist nodes to be part of regular lists, created with
 * @ref eina_list_append() or @ref eina_list_prepend(). It's also possible to
 * have a structure with two inlist pointers, thus be part of two different
 * inlists at the same time, but the current convenience macros provided won't
 * work for both of them. Consult @ref inlist_advanced for more info.
 *
 * Inline lists have their purposes, but if you don't know what those purposes are, go with
 * regular lists instead.
 *
 * Tip: When using inlists in more than one place (that is, passing them around
 * functions or keeping a pointer to them in a structure) it's more correct
 * to keep a pointer to the first container, and not a pointer to the first
 * inlist item (mostly they are the same, but that's not always correct).
 * This lets the compiler to do type checking and let the programmer know
 * exactly what type this list is.
 *
 * A simple example demonstrating the basic usage of an inlist can be found
 * here: @ref eina_inlist_01_example_page
 *
 * @section inlist_algo Algorithm
 *
 * The basic structure can be represented by the following picture:
 *
 * @image html eina_inlist-node.png
 * @image rtf eina_inlist-node.png
 * @image latex eina_inlist-node.eps
 *
 * One data structure will also have the node information, with three pointers:
 * @a prev, @a next and @a last. The @a last pointer is just valid for the first
 * element (the list head), otherwise each insertion in the list would have to
 * be done updating every node with the correct pointer. This means that it's
 * always very important to keep a pointer to the first element of the list,
 * since it is the only one that has the correct information to allow a proper
 * O(1) append to the list.
 *
 * @section inlist_perf Performance
 *
 * Due to the nature of the inlist, there's no accounting information, and no
 * easy access to the last element from each list node. This means that @ref
 * eina_inlist_count() is order-N, while @ref eina_list_count() is order-1 (constant
 * time).
 *
 * @section inlist_advanced Advanced Usage
 *
 * The basic usage considers a struct that will have the user data, and also
 * have an inlist node information (prev, next and last pointers) created with
 * @ref EINA_INLIST during the struct declaration. This allows one to use the
 * convenience macros @ref EINA_INLIST_GET(), @ref EINA_INLIST_CONTAINER_GET(),
 * @ref EINA_INLIST_FOREACH() and so. This happens because the @ref EINA_INLIST
 * macro declares a struct member with the name @a __inlist, and all the other
 * macros assume that this struct member has this name.
 *
 * It may be the case that someone needs to have some inlist nodes added to a
 * @ref Eina_List too. If this happens, the inlist nodes can be added to the
 * @ref Eina_List without any problems. This example demonstrates this case:
 * @ref eina_inlist_02_example_page
 *
 * It's also possible to have some data that is part of two different inlists.
 * If this is the case, then it won't be possible to use the convenience macros
 * to both of the lists. It will be necessary to create a new set of macros that
 * will allow access to the second list node info. An example for this usage can
 * be found here:
 * @ref eina_inlist_03_example_page
 *
 * List of examples:
 * @li @ref eina_inlist_01_example_page
 * @li @ref eina_inlist_02_example_page
 * @li @ref eina_inlist_03_example_page
 */

/**
 * @addtogroup Eina_Data_Types_Group Data Types
 *
 * @{
 */

/**
 * @addtogroup Eina_Containers_Group Containers
 *
 * @{
 */

/**
 * @defgroup Eina_Inline_List_Group Inline List
 *
 * @{
 */

/**
 * @typedef Eina_Inlist
 * Inlined list type.
 */
typedef struct _Eina_Inlist Eina_Inlist;

/**
 * @typedef Eina_Inlist_Sorted_State
 * @since 1.1.0
 * State of sorted Eina_Inlist
 */
typedef struct _Eina_Inlist_Sorted_State Eina_Inlist_Sorted_State;

/**
 * @struct _Eina_Inlist
 * Inlined list type.
 */
struct _Eina_Inlist
{
   Eina_Inlist *next; /**< next node */
   Eina_Inlist *prev; /**< previous node */
   Eina_Inlist *last; /**< last node */
};
/** Used for declaring an inlist member in a struct */
#define EINA_INLIST Eina_Inlist __in_list
/** Utility macro to get the inlist object of a struct */
#define EINA_INLIST_GET(Inlist)         (& ((Inlist)->__in_list))
/** Utility macro to get the container object of an inlist */
#define EINA_INLIST_CONTAINER_GET(ptr,                          \
                                  type) ((type *)(void *)((char *)ptr - \
                                                  offsetof(type, __in_list)))


/**
 * @brief Adds a new node to end of a list.
 *
 * @note This code is meant to be fast: appends are O(1) and do not
 *       walk @a in_list.
 *
 * @note @a in_item is considered to be in no list. If it was in another
 *       list before, eina_inlist_remove() it before adding. No
 *       check of @a new_l prev and next pointers is done, so it's safe
 *       to have them uninitialized.
 *
 * @param in_list Existing list head or @c NULL to create a new list.
 * @param in_item New list node, must not be @c NULL.
 *
 * @return The new list head. Use it and not @a in_list anymore.
 */
EAPI Eina_Inlist *eina_inlist_append(Eina_Inlist *in_list,
                                     Eina_Inlist *in_item) EINA_ARG_NONNULL(2) EINA_WARN_UNUSED_RESULT;

/**
 * @brief Adds a new node to beginning of list.
 *
 * @note This code is meant to be fast: appends are O(1) and do not
 *       walk @a in_list.
 *
 * @note @a new_l is considered to be in no list. If it was in another
 *       list before, eina_inlist_remove() it before adding. No
 *       check of @a new_l prev and next pointers is done, so it's safe
 *       to have them uninitialized.
 *
 * @param in_list Existing list head or @c NULL to create a new list.
 * @param in_item New list node, must not be @c NULL.
 *
 * @return The new list head. Use it and not @a in_list anymore.
 */
EAPI Eina_Inlist *eina_inlist_prepend(Eina_Inlist *in_list,
                                      Eina_Inlist *in_item) EINA_ARG_NONNULL(2) EINA_WARN_UNUSED_RESULT;

/**
 * @brief Adds a new node after the given relative item in list.
 *
 * @note This code is meant to be fast: appends are O(1) and do not
 *       walk @a in_list.
 *
 * @note @a in_item_l is considered to be in no list. If it was in another
 *       list before, eina_inlist_remove() it before adding. No
 *       check of @a in_item prev and next pointers is done, so it's safe
 *       to have them uninitialized.
 *
 * @note @a in_relative is considered to be inside @a in_list, no checks are
 *       done to confirm that and giving nodes from different lists
 *       will lead to problems. Giving NULL @a in_relative is the same as
 *       eina_list_append().
 *
 * @param in_list Existing list head or @c NULL to create a new list.
 * @param in_item New list node, must not be @c NULL.
 * @param in_relative Reference node, @a in_item will be added after it.
 *
 * @return The new list head. Use it and not @a list anymore.
 */
EAPI Eina_Inlist *eina_inlist_append_relative(Eina_Inlist *in_list,
                                              Eina_Inlist *in_item,
                                              Eina_Inlist *in_relative) EINA_ARG_NONNULL(2) EINA_WARN_UNUSED_RESULT;

/**
 * @brief Adds a new node before the given relative item in list.
 *
 * @note This code is meant to be fast: appends are O(1) and do not
 *       walk @a in_list.
 *
 * @note @a in_item is considered to be in no list. If it was in another
 *       list before, eina_inlist_remove() it before adding. No
 *       check of @a in_item prev and next pointers is done, so it's safe
 *       to have them uninitialized.
 *
 * @note @a in_relative is considered to be inside @a in_list, no checks are
 *       done to confirm that and giving nodes from different lists
 *       will lead to problems. Giving NULL @a in_relative is the same as
 *       eina_list_prepend().
 *
 * @param in_list Existing list head or @c NULL to create a new list.
 * @param in_item New list node, must not be @c NULL.
 * @param in_relative Reference node, @a in_item will be added before it.
 *
 * @return The new list head. Use it and not @a in_list anymore.
 */
EAPI Eina_Inlist *eina_inlist_prepend_relative(Eina_Inlist *in_list,
                                               Eina_Inlist *in_item,
                                               Eina_Inlist *in_relative) EINA_ARG_NONNULL(2) EINA_WARN_UNUSED_RESULT;

/**
 * @brief Removes node from list.
 *
 * @note This code is meant to be fast: appends are O(1) and do not
 *       walk @a list.
 *
 * @note @a in_item is considered to be inside @a in_list, no checks are
 *       done to confirm that and giving nodes from different lists
 *       will lead to problems, especially if @a in_item is the head since
 *       it will be different from @a list and the wrong new head will
 *       be returned.
 *
 * @param in_list Existing list head, must not be @c NULL.
 * @param in_item Existing list node, must not be @c NULL.
 *
 * @return The new list head. Use it and not @a list anymore.
 */
EAPI Eina_Inlist   *eina_inlist_remove(Eina_Inlist *in_list,
                                       Eina_Inlist *in_item) EINA_ARG_NONNULL(1, 2) EINA_WARN_UNUSED_RESULT;

/**
 * @brief Finds given node in list, returns itself if found, NULL if not.
 *
 * @warning This is an expensive call and has O(n) cost, possibly
 *    walking the whole list.
 *
 * @param in_list Existing list to search @a in_item in, must not be @c NULL.
 * @param in_item What to search for, must not be @c NULL.
 *
 * @return @a in_item if found, @c NULL if not.
 */
EAPI Eina_Inlist   *eina_inlist_find(Eina_Inlist *in_list,
                                     Eina_Inlist *in_item) EINA_ARG_NONNULL(2) EINA_WARN_UNUSED_RESULT;

/**
 * @brief Moves existing node to beginning of list.
 *
 * @note This code is meant to be fast: appends are O(1) and do not
 *       walk @a list.
 *
 * @note @a item is considered to be inside @a list. No checks are
 *       done to confirm this, and giving nodes from different lists
 *       will lead to problems.
 *
 * @param list Existing list head or @c NULL to create a new list.
 * @param item List node to move to beginning (head), must not be @c NULL.
 *
 * @return The new list head. Use it and not @a list anymore.
 */
EAPI Eina_Inlist   *eina_inlist_promote(Eina_Inlist *list,
                                        Eina_Inlist *item) EINA_ARG_NONNULL(1, 2) EINA_WARN_UNUSED_RESULT;

/**
 * @brief Moves existing node to end of list.
 *
 * @note This code is meant to be fast: appends are O(1) and do not
 *       walk @a list.
 *
 * @note @a item is considered to be inside @a list. No checks are
 *       done to confirm this, and giving nodes from different lists
 *       will lead to problems.
 *
 * @param list Existing list head or @c NULL to create a new list.
 * @param item List node to move to end (tail), must not be @c NULL.
 *
 * @return The new list head. Use it and not @a list anymore.
 */
EAPI Eina_Inlist   *eina_inlist_demote(Eina_Inlist *list,
                                       Eina_Inlist *item) EINA_ARG_NONNULL(1, 2) EINA_WARN_UNUSED_RESULT;

/**
 * @brief Gets the first list node in the list.
 *
 * @param list The list to get the first list node from.
 * @return The first list node in the list.
 *
 * This function returns the first list node in the list @p list. If
 * @p list is @c NULL, @c NULL is returned.
 *
 * This is a O(N) operation (it takes time proportional
 * to the length of the list).
 *
 * @since 1.8
 */
static inline Eina_Inlist *eina_inlist_first(const Eina_Inlist *list) EINA_PURE EINA_WARN_UNUSED_RESULT;

/**
 * @brief Gets the last list node in the list.
 *
 * @param list The list to get the last list node from.
 * @return The last list node in the list.
 *
 * This function returns the last list node in the list @p list. If
 * @p list is @c NULL, @c NULL is returned.
 *
 * This is a O(N) operation (it takes time proportional
 * to the length of the list).
 *
 * @since 1.8
 */
static inline Eina_Inlist *eina_inlist_last(const Eina_Inlist *list) EINA_PURE EINA_WARN_UNUSED_RESULT;

/**
 * @brief Gets the count of the number of items in a list.
 *
 * @param list The list whose count to return.
 * @return The number of members in the list.
 *
 * This function returns how many members @p list contains. If the
 * list is @c NULL, @c 0 is returned.
 *
 * @warning This is an order-N operation and so the time will depend
 *    on the number of elements on the list, so, it might become
 *    slow for big lists!
 */
EAPI unsigned int   eina_inlist_count(const Eina_Inlist *list) EINA_WARN_UNUSED_RESULT;


/**
 * @brief Returns a new iterator associated to @a list.
 *
 * @param in_list The list.
 * @return A new iterator.
 *
 * This function returns a newly allocated iterator associated to @p
 * in_list. If @p in_list is @c NULL or the count member of @p in_list is less
 * or equal than 0, this function still returns a valid iterator that
 * will always return false on eina_iterator_next(), thus keeping API
 * sane.
 *
 * If the memory can not be allocated, @c NULL is returned.
 * Otherwise, a valid iterator is returned.
 *
 * @warning if the list structure changes then the iterator becomes
 *    invalid, and if you add or remove nodes iterator
 *    behavior is undefined, and your program may crash!
 */
EAPI Eina_Iterator *eina_inlist_iterator_new(const Eina_Inlist *in_list) EINA_MALLOC EINA_WARN_UNUSED_RESULT;

/**
 * @brief Returns a new accessor associated to a list.
 *
 * @param in_list The list.
 * @return A new accessor.
 *
 * This function returns a newly allocated accessor associated to
 * @p in_list. If @p in_list is @c NULL or the count member of @p in_list is
 * less or equal than @c 0, this function returns @c NULL. If the memory can
 * not be allocated, @c NULL is returned and Otherwise, a valid accessor is
 * returned.
 */
EAPI Eina_Accessor *eina_inlist_accessor_new(const Eina_Inlist *in_list) EINA_MALLOC EINA_WARN_UNUSED_RESULT;

/**
 * @brief Inserts a new node into a sorted list.
 *
 * @param list The given linked list, @b must be sorted.
 * @param item List node to insert, must not be @c NULL.
 * @param func The function called for the sort.
 * @return A list pointer.
 * @since 1.1.0
 *
 * This function inserts item into a linked list assuming it was
 * sorted and the result will be sorted. If @p list is @c NULL, item
 * is returned. On success, a new list pointer that should be
 * used in place of the one given to this function is
 * returned. Otherwise, the old pointer is returned.
 *
 * @note O(log2(n)) comparisons (calls to @p func) average/worst case
 * performance. As said in eina_list_search_sorted_near_list(),
 * lists do not have O(1) access time, so walking to the correct node
 * can be costly, consider worst case to be almost O(n) pointer
 * dereference (list walk).
 */
EAPI Eina_Inlist *eina_inlist_sorted_insert(Eina_Inlist *list, Eina_Inlist *item, Eina_Compare_Cb func) EINA_ARG_NONNULL(2, 3) EINA_WARN_UNUSED_RESULT;

/**
 * @brief Creates state with valid data in it.
 *
 * @return A valid Eina_Inlist_Sorted_State.
 * @since 1.1.0
 *
 * See eina_inlist_sorted_state_insert() for more information.
 */
EAPI Eina_Inlist_Sorted_State *eina_inlist_sorted_state_new(void);

/**
 * @brief Forces an Eina_Inlist_Sorted_State to match the content of a list.
 *
 * @param state The state to update
 * @param list The list to match
 * @return The number of item in the actually in the list
 * @since 1.1.0
 *
 * See eina_inlist_sorted_state_insert() for more information. This function is
 * useful if you didn't use eina_inlist_sorted_state_insert() at some point, but
 * still think you have a sorted list. It will only correctly work on a sorted list.
 */
EAPI int eina_inlist_sorted_state_init(Eina_Inlist_Sorted_State *state, Eina_Inlist *list);

/**
 * @brief Frees an Eina_Inlist_Sorted_State.
 *
 * @param state The state to destroy
 * @since 1.1.0
 *
 * See eina_inlist_sorted_state_insert() for more information.
 */
EAPI void eina_inlist_sorted_state_free(Eina_Inlist_Sorted_State *state);

/**
 * @brief Inserts a new node into a sorted list.
 *
 * @param list The given linked list, @b must be sorted.
 * @param item list node to insert, must not be @c NULL.
 * @param func The function called for the sort.
 * @param state The current array for initial dichotomic search
 * @return A list pointer.
 * @since 1.1.0
 *
 * This function inserts item into a linked list assuming @p state matches
 * the exact content order of the list. It uses @p state to do a fast
 * first step dichotomic search before starting to walk the inlist itself.
 * This makes this code much faster than eina_inlist_sorted_insert() as it
 * doesn't need to walk the list at all. The result is of course a sorted
 * list with an updated state. If @p list is @c NULL, item
 * is returned. On success, a new list pointer that should be
 * used in place of the one given to this function is
 * returned. Otherwise, the old pointer is returned.
 *
 * @note O(log2(n)) comparisons (calls to @p func) average/worst case
 * performance. As said in eina_list_search_sorted_near_list(),
 * lists do not have O(1) access time, so walking to the correct node
 * can be costly, but this version tries to minimize that by making it a
 * O(log2(n)) for number small number. After n == 256, it starts to add a
 * linear cost again. Consider worst case to be almost O(n) pointer
 * dereference (list walk).
 */
EAPI Eina_Inlist *eina_inlist_sorted_state_insert(Eina_Inlist *list,
						  Eina_Inlist *item,
						  Eina_Compare_Cb func,
						  Eina_Inlist_Sorted_State *state);
/**
 * @brief Sorts a list according to the ordering func will return.
 *
 * @param head The list handle to sort.
 * @param func A function pointer that can handle comparing the list data
 * nodes.
 * @return the new head of list.
 *
 * This function sorts all the elements of @p head. @p func is used to
 * compare two elements of @p head. If @p head or @p func are @c NULL,
 * this function returns @c NULL.
 *
 * @note @b in-place: this will change the given list, so you should
 * now point to the new list head that is returned by this function.
 *
 * @note Worst case is O(n * log2(n)) comparisons (calls to func()).
 * That means that for 1,000,000 list  elements, sort will do 20,000,000
 * comparisons.
 *
 * Example:
 * @code
 * typedef struct _Sort_Ex Sort_Ex;
 * struct _Sort_Ex
 * {
 *   EINA_INLIST;
 *   const char *text;
 * };
 *
 * int
 * sort_cb(const Inlist *l1, const Inlist *l2)
 * {
 *    const Sort_Ex *x1;
 *    const Sort_Ex *x2;
 *
 *    x1 = EINA_INLIST_CONTAINER_GET(l1, Sort_Ex);
 *    x2 = EINA_INLIST_CONTAINER_GET(l2, Sort_Ex);
 *
 *    return(strcmp(x1->text, x2->text));
 * }
 * extern Eina_Inlist *list;
 *
 * list = eina_inlist_sort(list, sort_cb);
 * @endcode
 */
EAPI Eina_Inlist *eina_inlist_sort(Eina_Inlist *head, Eina_Compare_Cb func);

/* These two macros are helpers for the _FOREACH ones, don't use them */
/**
 * @def _EINA_INLIST_OFFSET
 * @param ref The reference to be used.
 */
#define _EINA_INLIST_OFFSET(ref)         ((char *)&(ref)->__in_list - (char *)(ref))

#if !defined(__cplusplus)
/**
 * @def _EINA_INLIST_CONTAINER
 * @param ref The reference to be used.
 * @param ptr The pointer to be used.
 */
#define _EINA_INLIST_CONTAINER(ref, ptr) (void *)((char *)(ptr) - \
                                                  _EINA_INLIST_OFFSET(ref))
#else
/*
 * In C++ we can't assign a "type*" pointer to void* so we rely on GCC's typeof
 * operator.
 */
# define _EINA_INLIST_CONTAINER(ref, ptr) (__typeof__(ref))((char *)(ptr) - \
							    _EINA_INLIST_OFFSET(ref))
#endif

/**
 * @def EINA_INLIST_FOREACH
 * @param list The list to iterate on.
 * @param it The pointer to the list item, i.e. a pointer to each item
 * that is part of the list.
 */
#define EINA_INLIST_FOREACH(list, it)                                     \
  for (it = NULL, it = (list ? _EINA_INLIST_CONTAINER(it, list) : NULL); it; \
       it = (EINA_INLIST_GET(it)->next ? _EINA_INLIST_CONTAINER(it, EINA_INLIST_GET(it)->next) : NULL))

/**
 * @def EINA_INLIST_FOREACH_SAFE
 * @param list The list to iterate on.
 * @param list2 Auxiliary Eina_Inlist variable so we can save the pointer to the
 * next element, allowing us to free/remove the current one. Note that this
 * macro is only safe if the next element is not removed. Only the current one
 * is allowed to be removed.
 * @param it The pointer to the list item, i.e. a pointer to each item
 * that is part of the list.
 */
#define EINA_INLIST_FOREACH_SAFE(list, list2, it) \
   for (it = NULL, it = (list ? _EINA_INLIST_CONTAINER(it, list) : NULL), list2 = it ? EINA_INLIST_GET(it)->next : NULL; \
        it; \
        it = NULL, it = list2 ? _EINA_INLIST_CONTAINER(it, list2) : NULL, list2 = list2 ? list2->next : NULL)

/**
 * @def EINA_INLIST_REVERSE_FOREACH
 * @param list The list to traverse in reverse order.
 * @param it The pointer to the list item, i.e. a pointer to each item
 * that is part of the list.
 */
#define EINA_INLIST_REVERSE_FOREACH(list, it)                                \
  for (it = NULL, it = (list ? _EINA_INLIST_CONTAINER(it, list->last) : NULL); \
       it; it = (EINA_INLIST_GET(it)->prev ? _EINA_INLIST_CONTAINER(it, EINA_INLIST_GET(it)->prev) : NULL))

/**
 * @def EINA_INLIST_REVERSE_FOREACH_FROM
 * @param list The last list to traverse in reverse order.
 * @param it The pointer to the list item, i.e. a pointer to each item
 * that is part of the list.
 * @see EINA_INLIST_REVERSE_FOREACH()
 * @since 1.8
 *
 * EINA_INLIST_REVERSE_FOREACH() starts from last list of the given list.
 * This starts from given list, not the last one.
 */
#define EINA_INLIST_REVERSE_FOREACH_FROM(list, it)                                \
  for (it = NULL, it = (list ? _EINA_INLIST_CONTAINER(it, list) : NULL); \
       it; it = (EINA_INLIST_GET(it)->prev ? _EINA_INLIST_CONTAINER(it, EINA_INLIST_GET(it)->prev) : NULL))

/**
 * @def EINA_INLIST_FREE
 * @param list The list to free.
 * @param it The pointer to the list item, i.e. a pointer to each item
 * that is part of the list.
 *
 * NOTE: it is the duty of the body loop to properly remove the item from the
 * inlist and free it. This function will turn into a infinite loop if you
 * don't remove all items from the list.
 * @since 1.8
 */
#define EINA_INLIST_FREE(list, it)				\
  for (it = (__typeof__(it)) list; list; it = (__typeof__(it)) list)

#include "eina_inline_inlist.x"

/**
 * @}
 */

/**
 * @}
 */

/**
 * @}
 */

#endif /*EINA_INLIST_H_*/