Documentation of issues involved with implementing respawn.

SVN revision: 19524
This commit is contained in:
David Walter Seikel 2006-01-04 16:33:25 +00:00
parent c990136eab
commit e1b7ef2a78
1 changed files with 56 additions and 0 deletions

View File

@ -154,6 +154,62 @@ enum _Ecore_Exe_Flags
ECORE_EXE_PIPE_WRITE = 2,
ECORE_EXE_PIPE_READ_LINE_BUFFERED = 4,
ECORE_EXE_RESPAWN = 8
/* FIXME: Getting respawn to work
*
* There is no way that we can do anything about the internal state info of
* an external exe. The same can be said about the state of user code. User
* code in this context means the code that is using ecore_exe to manage exe's
* for it.
*
* Document that the exe must be respawnable, in other words, there is no
* state that it cannot regenerate by just killing it and starting it again.
* This includes state that the user code knows about, as the respawn is
* transparent to that code. On the other hand, maybe a respawn event might
* be useful, or maybe resend the currently non existant add event. For
* consistancy with ecore_con, an add event is good anyway.
*
* The Ecore_exe structure is reused for respawning, so that the (opaque)
* pointer held by the user remains valid. This means that the Ecore_Exe
* init and del functions may need to be split into two parts each to avoid
* duplicating code - common code part, and the rest. This implies that
* the unchanging members mentioned next should NEVER change.
*
* These structure members don't need to change -
* __list_data - we stay on the list
* ECORE_MAGIC - this is a constant
* data - passed in originally
* cmd - passed in originally
* flags - passed in originally
*
* These structure members need to change -
* tag - state that must be regenerated, zap it
* pid - it will be different
* child_fd_write - it will be different
* child_fd_read - it will be different
* write_fd_handler - we cannot change the fd used by a handler, this changes coz the fd changes.
* read_fd_handler - we cannot change the fd used by a handler, this changes coz the fd changes.
*
* Hmm, the read and write buffers could be tricky.
* They are not atomic, and could be in a semi complete state.
* They fall into the "state must be regenerated" mentioned above.
* A respawn/add event should take care of it.
*
* These structure members need to change -
* write_data_buf - state that must be regenerated, zap it
* write_data_size - state that must be regenerated, zap it
* write_data_offset - state that must be regenerated, zap it
* read_data_buf - state that must be regenerated, zap it
* read_data_size - state that must be regenerated, zap it
* close_write - state that must be regenerated, zap it
*
* There is the problem that an exe that fell over and needs respawning
* might keep falling over, keep needing to be respawned, and tie up system
* resources with the constant respawning. An exponentially increasing
* timeout (with maximum timeout) between respawns should take care of that.
* Although this is not a "contention for a resource" problem, the exe falling
* over may be, so a random element added to the timeout may help, and won't
* hurt. The user code may need to be informed that a timeout is in progress.
*/
};
typedef enum _Ecore_Exe_Flags Ecore_Exe_Flags;