efl/src/static_libs/freetype/sw_ft_math.c

529 lines
12 KiB
C

/***************************************************************************/
/* */
/* fttrigon.c */
/* */
/* FreeType trigonometric functions (body). */
/* */
/* Copyright 2001-2005, 2012-2013 by */
/* David Turner, Robert Wilhelm, and Werner Lemberg. */
/* */
/* This file is part of the FreeType project, and may only be used, */
/* modified, and distributed under the terms of the FreeType project */
/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
/* this file you indicate that you have read the license and */
/* understand and accept it fully. */
/* */
/***************************************************************************/
#include <math.h>
#include "sw_ft_math.h"
#define SW_FT_MSB( x ) ( 31 - __builtin_clz( x ) )
#define SW_FT_PAD_FLOOR( x, n ) ( (x) & ~((n)-1) )
#define SW_FT_PAD_ROUND( x, n ) SW_FT_PAD_FLOOR( (x) + ((n)/2), n )
#define SW_FT_PAD_CEIL( x, n ) SW_FT_PAD_FLOOR( (x) + ((n)-1), n )
#define SW_FT_BEGIN_STMNT do {
#define SW_FT_END_STMNT } while ( 0 )
/* transfer sign leaving a positive number */
#define SW_FT_MOVE_SIGN( x, s ) \
SW_FT_BEGIN_STMNT \
if ( x < 0 ) \
{ \
x = -x; \
s = -s; \
} \
SW_FT_END_STMNT
SW_FT_Long
SW_FT_MulFix( SW_FT_Long a,
SW_FT_Long b )
{
SW_FT_Int s = 1;
SW_FT_Long c;
SW_FT_MOVE_SIGN( a, s );
SW_FT_MOVE_SIGN( b, s );
c = (SW_FT_Long)( ( (SW_FT_Int64)a * b + 0x8000L ) >> 16 );
return ( s > 0 ) ? c : -c;
}
SW_FT_Long
SW_FT_MulDiv( SW_FT_Long a,
SW_FT_Long b,
SW_FT_Long c )
{
SW_FT_Int s = 1;
SW_FT_Long d;
SW_FT_MOVE_SIGN( a, s );
SW_FT_MOVE_SIGN( b, s );
SW_FT_MOVE_SIGN( c, s );
d = (SW_FT_Long)( c > 0 ? ( (SW_FT_Int64)a * b + ( c >> 1 ) ) / c
: 0x7FFFFFFFL );
return ( s > 0 ) ? d : -d;
}
SW_FT_Long
SW_FT_DivFix( SW_FT_Long a,
SW_FT_Long b )
{
SW_FT_Int s = 1;
SW_FT_Long q;
SW_FT_MOVE_SIGN( a, s );
SW_FT_MOVE_SIGN( b, s );
q = (SW_FT_Long)( b > 0 ? ( ( (SW_FT_UInt64)a << 16 ) + ( b >> 1 ) ) / b
: 0x7FFFFFFFL );
return ( s < 0 ? -q : q );
}
/*************************************************************************/
/* */
/* This is a fixed-point CORDIC implementation of trigonometric */
/* functions as well as transformations between Cartesian and polar */
/* coordinates. The angles are represented as 16.16 fixed-point values */
/* in degrees, i.e., the angular resolution is 2^-16 degrees. Note that */
/* only vectors longer than 2^16*180/pi (or at least 22 bits) on a */
/* discrete Cartesian grid can have the same or better angular */
/* resolution. Therefore, to maintain this precision, some functions */
/* require an interim upscaling of the vectors, whereas others operate */
/* with 24-bit long vectors directly. */
/* */
/*************************************************************************/
/* the Cordic shrink factor 0.858785336480436 * 2^32 */
#define SW_FT_TRIG_SCALE 0xDBD95B16UL
/* the highest bit in overflow-safe vector components, */
/* MSB of 0.858785336480436 * sqrt(0.5) * 2^30 */
#define SW_FT_TRIG_SAFE_MSB 29
/* this table was generated for SW_FT_PI = 180L << 16, i.e. degrees */
#define SW_FT_TRIG_MAX_ITERS 23
static const SW_FT_Fixed
ft_trig_arctan_table[] =
{
1740967L, 919879L, 466945L, 234379L, 117304L, 58666L, 29335L,
14668L, 7334L, 3667L, 1833L, 917L, 458L, 229L, 115L,
57L, 29L, 14L, 7L, 4L, 2L, 1L
};
/* multiply a given value by the CORDIC shrink factor */
static SW_FT_Fixed
ft_trig_downscale( SW_FT_Fixed val )
{
SW_FT_Fixed s;
SW_FT_Int64 v;
s = val;
val = SW_FT_ABS( val );
v = ( val * (SW_FT_Int64)SW_FT_TRIG_SCALE ) + 0x100000000UL;
val = (SW_FT_Fixed)( v >> 32 );
return ( s >= 0 ) ? val : -val;
}
/* undefined and never called for zero vector */
static SW_FT_Int
ft_trig_prenorm( SW_FT_Vector* vec )
{
SW_FT_Pos x, y;
SW_FT_Int shift;
x = vec->x;
y = vec->y;
shift = SW_FT_MSB( SW_FT_ABS( x ) | SW_FT_ABS( y ) );
if ( shift <= SW_FT_TRIG_SAFE_MSB )
{
shift = SW_FT_TRIG_SAFE_MSB - shift;
vec->x = (SW_FT_Pos)( (SW_FT_ULong)x << shift );
vec->y = (SW_FT_Pos)( (SW_FT_ULong)y << shift );
}
else
{
shift -= SW_FT_TRIG_SAFE_MSB;
vec->x = x >> shift;
vec->y = y >> shift;
shift = -shift;
}
return shift;
}
static void
ft_trig_pseudo_rotate( SW_FT_Vector* vec,
SW_FT_Angle theta )
{
SW_FT_Int i;
SW_FT_Fixed x, y, xtemp, b;
const SW_FT_Fixed *arctanptr;
x = vec->x;
y = vec->y;
/* Rotate inside [-PI/4,PI/4] sector */
while ( theta < -SW_FT_ANGLE_PI4 )
{
xtemp = y;
y = -x;
x = xtemp;
theta += SW_FT_ANGLE_PI2;
}
while ( theta > SW_FT_ANGLE_PI4 )
{
xtemp = -y;
y = x;
x = xtemp;
theta -= SW_FT_ANGLE_PI2;
}
arctanptr = ft_trig_arctan_table;
/* Pseudorotations, with right shifts */
for ( i = 1, b = 1; i < SW_FT_TRIG_MAX_ITERS; b <<= 1, i++ )
{
if ( theta < 0 )
{
xtemp = x + ( ( y + b ) >> i );
y = y - ( ( x + b ) >> i );
x = xtemp;
theta += *arctanptr++;
}
else
{
xtemp = x - ( ( y + b ) >> i );
y = y + ( ( x + b ) >> i );
x = xtemp;
theta -= *arctanptr++;
}
}
vec->x = x;
vec->y = y;
}
static void
ft_trig_pseudo_polarize( SW_FT_Vector* vec )
{
SW_FT_Angle theta;
SW_FT_Int i;
SW_FT_Fixed x, y, xtemp, b;
const SW_FT_Fixed *arctanptr;
x = vec->x;
y = vec->y;
/* Get the vector into [-PI/4,PI/4] sector */
if ( y > x )
{
if ( y > -x )
{
theta = SW_FT_ANGLE_PI2;
xtemp = y;
y = -x;
x = xtemp;
}
else
{
theta = y > 0 ? SW_FT_ANGLE_PI : -SW_FT_ANGLE_PI;
x = -x;
y = -y;
}
}
else
{
if ( y < -x )
{
theta = -SW_FT_ANGLE_PI2;
xtemp = -y;
y = x;
x = xtemp;
}
else
{
theta = 0;
}
}
arctanptr = ft_trig_arctan_table;
/* Pseudorotations, with right shifts */
for ( i = 1, b = 1; i < SW_FT_TRIG_MAX_ITERS; b <<= 1, i++ )
{
if ( y > 0 )
{
xtemp = x + ( ( y + b ) >> i );
y = y - ( ( x + b ) >> i );
x = xtemp;
theta += *arctanptr++;
}
else
{
xtemp = x - ( ( y + b ) >> i );
y = y + ( ( x + b ) >> i );
x = xtemp;
theta -= *arctanptr++;
}
}
/* round theta */
if ( theta >= 0 )
theta = SW_FT_PAD_ROUND( theta, 32 );
else
theta = -SW_FT_PAD_ROUND( -theta, 32 );
vec->x = x;
vec->y = theta;
}
/* documentation is in fttrigon.h */
SW_FT_Fixed
SW_FT_Cos( SW_FT_Angle angle )
{
SW_FT_Vector v;
v.x = SW_FT_TRIG_SCALE >> 8;
v.y = 0;
ft_trig_pseudo_rotate( &v, angle );
return ( v.x + 0x80L ) >> 8;
}
/* documentation is in fttrigon.h */
SW_FT_Fixed
SW_FT_Sin( SW_FT_Angle angle )
{
return SW_FT_Cos( SW_FT_ANGLE_PI2 - angle );
}
/* documentation is in fttrigon.h */
SW_FT_Fixed
SW_FT_Tan( SW_FT_Angle angle )
{
SW_FT_Vector v;
v.x = SW_FT_TRIG_SCALE >> 8;
v.y = 0;
ft_trig_pseudo_rotate( &v, angle );
return SW_FT_DivFix( v.y, v.x );
}
/* documentation is in fttrigon.h */
SW_FT_Angle
SW_FT_Atan2( SW_FT_Fixed dx,
SW_FT_Fixed dy )
{
SW_FT_Vector v;
if ( dx == 0 && dy == 0 )
return 0;
v.x = dx;
v.y = dy;
ft_trig_prenorm( &v );
ft_trig_pseudo_polarize( &v );
return v.y;
}
/* documentation is in fttrigon.h */
void
SW_FT_Vector_Unit( SW_FT_Vector* vec,
SW_FT_Angle angle )
{
vec->x = SW_FT_TRIG_SCALE >> 8;
vec->y = 0;
ft_trig_pseudo_rotate( vec, angle );
vec->x = ( vec->x + 0x80L ) >> 8;
vec->y = ( vec->y + 0x80L ) >> 8;
}
/* these macros return 0 for positive numbers,
and -1 for negative ones */
#define SW_FT_SIGN_LONG( x ) ( (x) >> ( SW_FT_SIZEOF_LONG * 8 - 1 ) )
#define SW_FT_SIGN_INT( x ) ( (x) >> ( SW_FT_SIZEOF_INT * 8 - 1 ) )
#define SW_FT_SIGN_INT32( x ) ( (x) >> 31 )
#define SW_FT_SIGN_INT16( x ) ( (x) >> 15 )
/* documentation is in fttrigon.h */
void
SW_FT_Vector_Rotate( SW_FT_Vector* vec,
SW_FT_Angle angle )
{
SW_FT_Int shift;
SW_FT_Vector v;
v.x = vec->x;
v.y = vec->y;
if ( angle && ( v.x != 0 || v.y != 0 ) )
{
shift = ft_trig_prenorm( &v );
ft_trig_pseudo_rotate( &v, angle );
v.x = ft_trig_downscale( v.x );
v.y = ft_trig_downscale( v.y );
if ( shift > 0 )
{
SW_FT_Int32 half = (SW_FT_Int32)1L << ( shift - 1 );
vec->x = ( v.x + half + SW_FT_SIGN_LONG( v.x ) ) >> shift;
vec->y = ( v.y + half + SW_FT_SIGN_LONG( v.y ) ) >> shift;
}
else
{
shift = -shift;
vec->x = (SW_FT_Pos)( (SW_FT_ULong)v.x << shift );
vec->y = (SW_FT_Pos)( (SW_FT_ULong)v.y << shift );
}
}
}
/* documentation is in fttrigon.h */
SW_FT_Fixed
SW_FT_Vector_Length( SW_FT_Vector* vec )
{
SW_FT_Int shift;
SW_FT_Vector v;
v = *vec;
/* handle trivial cases */
if ( v.x == 0 )
{
return SW_FT_ABS( v.y );
}
else if ( v.y == 0 )
{
return SW_FT_ABS( v.x );
}
/* general case */
shift = ft_trig_prenorm( &v );
ft_trig_pseudo_polarize( &v );
v.x = ft_trig_downscale( v.x );
if ( shift > 0 )
return ( v.x + ( 1 << ( shift - 1 ) ) ) >> shift;
return (SW_FT_Fixed)( (SW_FT_UInt32)v.x << -shift );
}
/* documentation is in fttrigon.h */
void
SW_FT_Vector_Polarize( SW_FT_Vector* vec,
SW_FT_Fixed *length,
SW_FT_Angle *angle )
{
SW_FT_Int shift;
SW_FT_Vector v;
v = *vec;
if ( v.x == 0 && v.y == 0 )
return;
shift = ft_trig_prenorm( &v );
ft_trig_pseudo_polarize( &v );
v.x = ft_trig_downscale( v.x );
*length = ( shift >= 0 ) ? ( v.x >> shift )
: (SW_FT_Fixed)( (SW_FT_UInt32)v.x << -shift );
*angle = v.y;
}
/* documentation is in fttrigon.h */
void
SW_FT_Vector_From_Polar( SW_FT_Vector* vec,
SW_FT_Fixed length,
SW_FT_Angle angle )
{
vec->x = length;
vec->y = 0;
SW_FT_Vector_Rotate( vec, angle );
}
/* documentation is in fttrigon.h */
SW_FT_Angle
SW_FT_Angle_Diff( SW_FT_Angle angle1,
SW_FT_Angle angle2 )
{
SW_FT_Angle delta = angle2 - angle1;
delta %= SW_FT_ANGLE_2PI;
if ( delta < 0 )
delta += SW_FT_ANGLE_2PI;
if ( delta > SW_FT_ANGLE_PI )
delta -= SW_FT_ANGLE_2PI;
return delta;
}
/* END */