enlightenment/src/modules/battery/e_mod_sysctl.c

341 lines
9.6 KiB
C

#include "e.h"
#include "e_mod_main.h"
#if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)
# include <err.h>
# include <sys/types.h>
# include <sys/sysctl.h>
#if defined(__FreeBSD__) || defined(__DragonFly__)
# include <sys/ioctl.h>
# include <dev/acpica/acpiio.h>
#endif
#if defined(__OpenBSD__)
# include <sys/param.h>
# include <sys/sensors.h>
#endif
static Eina_Bool _battery_sysctl_battery_update_poll(void *data EINA_UNUSED);
static int _battery_sysctl_battery_update();
extern Eina_List *device_batteries;
extern Eina_List *device_ac_adapters;
extern double init_time;
static Ac_Adapter *ac = NULL;
int
_battery_sysctl_start(void)
{
Battery *bat;
if (device_batteries) return 1;
# if defined(__OpenBSD__)
int mib[] = {CTL_HW, HW_SENSORS, 0, 0, 0};
int devn;
struct sensordev snsrdev;
size_t sdlen = sizeof(struct sensordev);
for (devn = 0;; devn++)
{
mib[2] = devn;
if (sysctl(mib, 3, &snsrdev, &sdlen, NULL, 0) == -1)
{
if (errno == ENXIO)
continue;
if (errno == ENOENT)
break;
}
if (!strncmp("acpibat", snsrdev.xname, 7))
{
if (!(bat = E_NEW(Battery, 1)))
return 0;
bat->udi = eina_stringshare_add(snsrdev.xname);
bat->mib = malloc(sizeof(int) * 5);
if (!bat->mib) return 0;
bat->mib[0] = mib[0];
bat->mib[1] = mib[1];
bat->mib[2] = mib[2];
bat->technology = eina_stringshare_add("Unknown");
bat->model = eina_stringshare_add("Unknown");
bat->vendor = eina_stringshare_add("Unknown");
bat->poll = ecore_poller_add(ECORE_POLLER_CORE,
battery_config->poll_interval,
_battery_sysctl_battery_update_poll, NULL);
device_batteries = eina_list_append(device_batteries, bat);
}
else if (!strcmp("acpiac0", snsrdev.xname))
{
if (!(ac = E_NEW(Ac_Adapter, 1)))
return 0;
ac->udi = eina_stringshare_add("acpiac0");
ac->mib = malloc(sizeof(int) * 5);
if (!ac->mib) return 0;
ac->mib[0] = mib[0];
ac->mib[1] = mib[1];
ac->mib[2] = mib[2];
device_ac_adapters = eina_list_append(device_ac_adapters, ac);
}
}
# elif defined(__FreeBSD__) || defined(__DragonFly__)
int fd, n_units, val;
union acpi_battery_ioctl_arg battio;
char buf[128];
if ((fd = open("/dev/acpi", O_RDONLY)) == -1) return 0;
if (ioctl(fd, ACPIIO_BATT_GET_UNITS, &n_units) == -1) return 0;
for (int i = 0; i < n_units; i++)
{
battio.unit = i;
if (ioctl(fd, ACPIIO_BATT_GET_BIX, &battio) != -1)
{
if (battio.bst.state == ACPI_BATT_STAT_NOT_PRESENT)
continue;
if (!(bat = E_NEW(Battery, 1)))
return 0;
snprintf(buf, sizeof(buf), "hw.acpi.battery.%i", i);
bat->udi = eina_stringshare_add(buf);
bat->technology = eina_stringshare_add(battio.bix.type);
bat->vendor = eina_stringshare_add(battio.bix.oeminfo);
bat->model = eina_stringshare_add(battio.bix.model);
bat->design_charge = battio.bix.dcap;
bat->last_full_charge = battio.bix.lfcap;
bat->poll = ecore_poller_add(ECORE_POLLER_CORE,
battery_config->poll_interval,
_battery_sysctl_battery_update_poll, NULL);
bat->unit = i;
device_batteries = eina_list_append(device_batteries, bat);
}
}
if (ioctl(fd, ACPIIO_ACAD_GET_STATUS, &val) != -1)
{
if (!(ac = E_NEW(Ac_Adapter, 1)))
return 0;
ac->udi = eina_stringshare_add("hw.acpi.acline");
ac->present = val;
device_ac_adapters = eina_list_append(device_ac_adapters, ac);
}
close(fd);
# endif
_battery_sysctl_battery_update();
if (bat)
bat->last_update = ecore_time_get();
return 1;
}
void
_battery_sysctl_stop(void)
{
Battery *bat;
if (ac)
{
eina_stringshare_del(ac->udi);
#if defined(__OpenBSD__)
E_FREE(ac->mib);
#endif
E_FREE(ac);
}
EINA_LIST_FREE(device_batteries, bat)
{
eina_stringshare_del(bat->udi);
eina_stringshare_del(bat->technology);
eina_stringshare_del(bat->model);
eina_stringshare_del(bat->vendor);
ecore_poller_del(bat->poll);
#if defined(__OpenBSD__)
E_FREE(bat->mib);
#endif
E_FREE(bat);
}
}
static Eina_Bool
_battery_sysctl_battery_update_poll(void *data EINA_UNUSED)
{
Battery *bat;
Eina_List *l;
EINA_LIST_FOREACH(device_batteries, l, bat)
_battery_sysctl_battery_update(bat);
return EINA_TRUE;
}
static int
_battery_sysctl_battery_update(Battery *bat)
{
double _time;
# if defined(__OpenBSD__)
double charge;
struct sensor s;
size_t slen = sizeof(struct sensor);
# elif defined(__FreeBSD__) || defined(__DragonFly__)
int fd, val;
union acpi_battery_ioctl_arg battio;
# endif
if (bat)
{
/* update the poller interval */
ecore_poller_poller_interval_set(bat->poll,
battery_config->poll_interval);
# if defined(__OpenBSD__)
charge = 0;
/* last full capacity */
bat->mib[3] = SENSOR_WATTHOUR;
bat->mib[4] = 0;
if (sysctl(bat->mib, 5, &s, &slen, NULL, 0) != -1)
{
bat->last_full_charge = (double)s.value;
}
/* remaining capacity */
bat->mib[3] = SENSOR_WATTHOUR;
bat->mib[4] = 3;
if (sysctl(bat->mib, 5, &s, &slen, NULL, 0) != -1)
{
charge = (double)s.value;
}
if ((EINA_FLT_EQ(charge, 0.0)) || (EINA_FLT_EQ(bat->last_full_charge, 0.0)))
{
/* last full capacity */
bat->mib[3] = SENSOR_AMPHOUR;
bat->mib[4] = 0;
if (sysctl(bat->mib, 5, &s, &slen, NULL, 0) != -1)
{
bat->last_full_charge = (double)s.value;
}
/* remaining capacity */
bat->mib[3] = SENSOR_AMPHOUR;
bat->mib[4] = 3;
if (sysctl(bat->mib, 5, &s, &slen, NULL, 0) != -1)
{
charge = (double)s.value;
}
}
bat->got_prop = 1;
_time = ecore_time_get();
if ((bat->got_prop) && (!EINA_FLT_EQ(charge, bat->current_charge)))
bat->charge_rate = ((charge - bat->current_charge) / (_time - bat->last_update));
bat->last_update = _time;
bat->current_charge = charge;
bat->percent = 100 * (bat->current_charge / bat->last_full_charge);
if (bat->current_charge >= bat->last_full_charge)
bat->percent = 100;
if (bat->got_prop)
{
if (bat->charge_rate > 0)
{
if (battery_config->fuzzy && (++battery_config->fuzzcount <= 10) && (bat->time_full > 0))
bat->time_full = (((bat->last_full_charge - bat->current_charge) / bat->charge_rate) + bat->time_full) / 2;
else
bat->time_full = (bat->last_full_charge - bat->current_charge) / bat->charge_rate;
bat->time_left = -1;
}
else
{
if (battery_config->fuzzy && (battery_config->fuzzcount <= 10) && (bat->time_left > 0))
bat->time_left = (((0 - bat->current_charge) / bat->charge_rate) + bat->time_left) / 2;
else
bat->time_left = (0 - bat->current_charge) / bat->charge_rate;
bat->time_full = -1;
}
}
else
{
bat->time_full = -1;
bat->time_left = -1;
}
/* battery state 1: discharge, 2: charge */
bat->mib[3] = 10;
bat->mib[4] = 0;
if (sysctl(bat->mib, 5, &s, &slen, NULL, 0) == -1)
{
if (s.value == 2)
bat->charging = 1;
else
bat->charging = 0;
}
# elif defined(__FreeBSD__) || defined(__DragonFly__)
if ((fd = open("/dev/acpi", O_RDONLY)) == -1) return 0;
battio.unit = bat->unit;
if (ioctl(fd, ACPIIO_BATT_GET_BATTINFO, &battio) == -1)
{
if (fd != -1)
close(fd);
return 0;
}
bat->got_prop = 1;
bat->percent = battio.battinfo.cap;
_time = ecore_time_get();
bat->last_update = _time;
bat->charging = (battio.battinfo.state == ACPI_BATT_STAT_CHARGING) ? 1 : 0;
bat->time_min = bat->time_full = battio.battinfo.min;
if (bat->time_min >= 0) bat->time_left = bat->time_min * 60;
close(fd);
# endif
}
if (ac)
{
# if defined(__OpenBSD__)
/* AC State */
ac->mib[3] = 9;
ac->mib[4] = 0;
if (sysctl(ac->mib, 5, &s, &slen, NULL, 0) != -1)
{
if (s.value)
ac->present = 1;
else
ac->present = 0;
}
# elif defined(__FreeBSD__) || defined(__DragonFly__)
if ((fd = open("/dev/acpi", O_RDONLY)) == -1) return 0;
if (ioctl(fd, ACPIIO_ACAD_GET_STATUS, &val) == -1)
{
close(fd);
return 0;
}
ac->present = val;
close(fd);
# endif
}
if (bat)
{
if (bat->got_prop)
_battery_device_update();
bat->got_prop = 1;
}
return 1;
}
#endif