efl/src/bindings/cxx/eo_cxx/eo_promise.hh

622 lines
19 KiB
C++
Raw Normal View History

///
/// @file eo_concrete.hh
///
#ifndef EFL_CXX_EO_PROMISE_HH
#define EFL_CXX_EO_PROMISE_HH
#include <Efl.h>
#include <Eina.hh>
#include <Ecore_Manual.hh>
#include <mutex>
#include <condition_variable>
2016-08-15 10:47:16 -07:00
#include <eina_tuple.hh>
namespace efl {
2016-08-15 10:47:16 -07:00
template <typename...Args>
struct shared_future;
namespace _impl {
2016-08-15 10:47:16 -07:00
template <typename...Futures>
struct all_result_type;
template <typename...Args>
struct all_result_type<shared_future<Args...>>
{
typedef shared_future<Args...> type;
};
template <typename...Args1, typename...Args2>
struct all_result_type<shared_future<Args1...>, shared_future<Args2...>>
{
typedef shared_future<Args1..., Args2...> type;
};
template <typename...Args1, typename...Args2, typename...OtherFutures>
struct all_result_type<shared_future<Args1...>, shared_future<Args2...>, OtherFutures...>
{
typedef typename all_result_type<shared_future<Args1..., Args2...>, OtherFutures...>::type type;
};
2016-08-15 10:47:16 -07:00
template <typename...Futures>
typename all_result_type<Futures...>::type
all_impl(Futures const& ... futures)
{
2016-08-15 10:47:16 -07:00
Efl_Future* future = ::efl_future_all_internal(futures.native_handle()..., NULL);
return typename all_result_type<Futures...>::type{ ::efl_ref(future)};
}
template <typename...Futures>
struct race_result_type;
template <typename...Args>
struct race_result_type<shared_future<Args...>>
{
typedef shared_future<Args...> type;
};
2016-08-15 10:47:16 -07:00
template <typename T, typename...Args>
struct race_compose_impl;
template <typename T, typename A0, typename...Args>
struct race_compose_impl<T, A0, Args...>
{
2016-08-15 10:47:16 -07:00
typedef typename std::conditional<eina::_mpl::tuple_contains<A0, T>::value
, typename race_compose_impl<T, Args...>::type
, typename race_compose_impl<typename eina::_mpl::push_back<T, A0>::type, Args...>::type
>::type type;
};
template <typename T>
struct race_compose_impl<T>
{
typedef T type;
};
template <typename T>
struct variant_from_tuple;
template <typename...Args>
struct variant_from_tuple<std::tuple<Args...>>
{
typedef eina::variant<Args...> type;
};
template <typename...Args>
struct race_variant
{
typedef typename variant_from_tuple<typename race_compose_impl<std::tuple<>, Args...>::type>::type type;
};
2016-08-15 10:47:16 -07:00
template <typename A0>
struct race_result_type<shared_future<A0>>
{
typedef shared_future<A0> type;
};
template <typename A0>
struct race_result_type<shared_future<eina::variant<A0>>>
{
typedef shared_future<A0> type;
};
template <typename...Args1, typename...Args2>
struct race_result_type<shared_future<Args1...>, shared_future<Args2...>>
{
typedef typename race_result_type<shared_future<typename race_variant<Args1..., Args2...>::type>>::type type;
};
template <typename...Args1, typename...Args2, typename...OtherFutures>
struct race_result_type<shared_future<Args1...>, shared_future<Args2...>, OtherFutures...>
{
typedef typename race_result_type<shared_future<typename race_variant<Args1..., Args2...>::type>
, OtherFutures...>::type type;
};
template <typename...Futures>
typename race_result_type<Futures...>::type
race_impl(Futures const& ... futures)
{
Efl_Future* future = ::efl_future_race_internal(futures.native_handle()..., NULL);
return typename race_result_type<Futures...>::type{ ::efl_ref(future)};
}
template <typename T, typename Enabler = void>
struct future_copy_traits
{
static void copy(T* storage, Efl_Future_Event_Success const* info)
{
eina::copy_from_c_traits<T>::copy_to_unitialized
(storage, info->value);
}
};
template <typename...Args>
struct future_copy_traits<eina::variant<Args...>>
{
template <std::size_t I>
static void copy_impl(eina::variant<Args...>*, void const*, int, std::integral_constant<std::size_t, I>
, std::integral_constant<std::size_t, I>)
{
std::abort();
}
template <std::size_t I, std::size_t N>
static void copy_impl(eina::variant<Args...>* storage, void const* value, int index, std::integral_constant<std::size_t, I>
, std::integral_constant<std::size_t, N> max
, typename std::enable_if<I != N>::type* = 0)
{
if(I == index)
{
eina::copy_from_c_traits<eina::variant<Args...>>::copy_to_unitialized
(storage, static_cast<typename std::tuple_element<I, std::tuple<Args...>>::type const*>
(static_cast<void const*>(value)));
}
else
copy_impl(storage, value, index, std::integral_constant<std::size_t, I+1>{}, max);
}
static void copy(eina::variant<Args...>* storage, Efl_Future_Event_Success const* other_info)
{
Efl_Future_Race_Success const* info = static_cast<Efl_Future_Race_Success const*>
(static_cast<void const*>(other_info));
copy_impl(storage, info->value, info->index, std::integral_constant<std::size_t, 0ul>{}
, std::integral_constant<std::size_t, sizeof...(Args)>{});
}
};
2016-08-15 10:47:16 -07:00
template <typename A0, typename F>
typename std::enable_if
<
!std::is_same<A0, void>::value
&& !std::is_same<typename std::result_of<F(A0)>::type, void>::value
>::type
future_invoke(F f, Efl_Event const* event)
{
Efl_Future_Event_Success* info = static_cast<Efl_Future_Event_Success*>(event->info);
try
{
typename std::aligned_storage<sizeof(A0), alignof(A0)>::type storage;
future_copy_traits<A0>::copy(static_cast<A0*>(static_cast<void*>(&storage)), info);
auto r = f(*static_cast<A0*>(static_cast<void*>(&storage)));
typedef decltype(r) result_type;
typedef typename eina::alloc_to_c_traits<result_type>::c_type c_type;
c_type* c_value = eina::alloc_to_c_traits<result_type>::copy_alloc(r);
efl_promise_value_set(info->next, c_value, & eina::alloc_to_c_traits<result_type>::free_alloc);
}
catch(...)
{
}
}
template <typename A0, typename F>
typename std::enable_if<std::is_same<A0, void>::value>::type
future_invoke(F f, Efl_Event const* event)
{
Efl_Future_Event_Success* info = static_cast<Efl_Future_Event_Success*>(event->info);
try
{
f();
}
catch(...)
{
}
}
2016-08-15 10:47:16 -07:00
template <std::size_t N, typename...Args, typename...StorageArgs>
static void future_invoke_impl_read_accessor
(Eina_Accessor*, std::tuple<StorageArgs...>&, std::tuple<Args...>*, std::true_type)
{
}
template <std::size_t N, typename...Args, typename...StorageArgs>
static void future_invoke_impl_read_accessor
(Eina_Accessor* accessor
, std::tuple<StorageArgs...>& storage_tuple
, std::tuple<Args...>* args
, std::false_type)
{
typedef std::tuple<Args...> tuple_type;
typedef typename std::tuple_element<N, tuple_type>::type type;
void* value;
if(eina_accessor_data_get(accessor, N, &value))
{
eina::copy_from_c_traits<type>::copy_to_unitialized
(static_cast<type*>(static_cast<void*>(&std::get<N>(storage_tuple))), value);
_impl::future_invoke_impl_read_accessor<N+1>
(accessor, storage_tuple, args
, std::integral_constant<bool, (N+1 == sizeof...(Args))>());
}
else
{
std::abort();
// some error
}
}
template <typename F, typename...Args, std::size_t...I>
void future_invoke_impl(F f, Efl_Event const* event, std::tuple<Args...>* arguments_dummy, eina::index_sequence<I...>)
{
Efl_Future_Event_Success* info = static_cast<Efl_Future_Event_Success*>(event->info);
try
{
typedef std::tuple<Args...> arguments;
typedef std::tuple<typename std::aligned_storage<sizeof(Args), alignof(Args)>::type...>
storage_tuple_type;
storage_tuple_type storage_tuple;
future_invoke_impl_read_accessor<0ul>
(static_cast<Eina_Accessor*>(info->value)
, storage_tuple
, arguments_dummy, std::false_type{});
auto r = f(*static_cast<typename std::tuple_element<I, arguments>::type*>
(static_cast<void*>(&std::get<I>(storage_tuple)))...);
typedef decltype(r) result_type;
typedef typename eina::alloc_to_c_traits<result_type>::c_type c_type;
c_type* c_value = eina::alloc_to_c_traits<result_type>::copy_alloc(r);
efl_promise_value_set(info->next, c_value, & eina::alloc_to_c_traits<result_type>::free_alloc);
}
catch(...)
{
}
}
template <typename A0, typename A1, typename...OtherArgs, typename F>
void
future_invoke(F f, Efl_Event const* event)
{
2016-08-15 10:47:16 -07:00
std::tuple<A0, A1, OtherArgs...>* p = nullptr;
_impl::future_invoke_impl(f, event, p, eina::make_index_sequence<sizeof...(OtherArgs) + 2>{});
}
}
template <typename T>
struct progress;
namespace _impl {
template <typename V = char>
struct wait_state
{
bool available = false;
bool has_failed = false;
std::mutex mutex;
std::condition_variable cv;
typename std::aligned_storage<sizeof(V), alignof(V)>::type storage;
Eina_Error error;
};
static void get_error_cb(void* data, Efl_Event const* event)
{
struct wait_state<>* wait_state = static_cast<struct wait_state<>*>(data);
Efl_Future_Event_Failure* info = static_cast<Efl_Future_Event_Failure*>(event->info);
std::unique_lock<std::mutex> l(wait_state->mutex);
wait_state->error = info->error;
wait_state->has_failed = true;
wait_state->available = true;
wait_state->cv.notify_one();
}
struct shared_future_common
{
explicit shared_future_common(Efl_Future* future)
: _future(future) {}
shared_future_common()
: _future(nullptr) {}
~shared_future_common()
{
if(_future)
efl_unref(_future);
}
shared_future_common(shared_future_common const& future)
: _future(efl_ref(future._future))
{
}
shared_future_common& operator=(shared_future_common const& other)
{
_self_type tmp(other);
tmp.swap(*this);
return *this;
}
shared_future_common(shared_future_common&& future)
: _future(future._future)
{
future._future = nullptr;
}
shared_future_common& operator=(shared_future_common&& other)
{
other.swap(*this);
return *this;
}
void swap(shared_future_common& other)
{
std::swap(_future, other._future);
}
bool valid() const noexcept
{
return _future != nullptr;
}
void wait() const
{
if(eina_main_loop_is())
throw std::runtime_error("Deadlock");
struct wait_state<> wait_state;
efl::ecore::main_loop_thread_safe_call_async
([&]
{
efl_future_then(this->_future, &wait_success, &wait_success, nullptr, &wait_state);
});
std::unique_lock<std::mutex> lock(wait_state.mutex);
while(!wait_state.available)
wait_state.cv.wait(lock);
}
static void wait_success(void* data, Efl_Event const*)
{
struct wait_state<>* wait_state = static_cast<struct wait_state<>*>(data);
std::unique_lock<std::mutex> l(wait_state->mutex);
wait_state->available = true;
wait_state->cv.notify_one();
}
typedef Efl_Future* native_handle_type;
2016-08-15 10:47:16 -07:00
native_handle_type native_handle() const noexcept { return _future; }
typedef shared_future_common _self_type;
Efl_Future* _future;
};
template <typename T>
struct shared_future_1_type : private shared_future_common
{
typedef shared_future_common _base_type;
using _base_type::_base_type;
using _base_type::swap;
using _base_type::valid;
using _base_type::native_handle;
using _base_type::wait;
typedef _base_type::native_handle_type native_handle_type;
T get() const
{
if(eina_main_loop_is())
throw std::runtime_error("Deadlock");
struct wait_state<T> wait_state;
efl::ecore::main_loop_thread_safe_call_async
([&]
{
efl_future_then(this->_future, &get_success, &_impl::get_error_cb, nullptr, &wait_state);
});
{
std::unique_lock<std::mutex> lock(wait_state.mutex);
while(!wait_state.available)
wait_state.cv.wait(lock);
}
if(wait_state.has_failed)
EFL_CXX_THROW(eina::system_error(eina::error_code(wait_state.error, eina::eina_error_category()), "EFL Eina Error"));
return *static_cast<T*>(static_cast<void*>(&wait_state.storage));
}
static void get_success(void* data, Efl_Event const* event)
{
struct wait_state<T>* wait_state = static_cast<struct wait_state<T>*>(data);
Efl_Future_Event_Success* info = static_cast<Efl_Future_Event_Success*>(event->info);
std::unique_lock<std::mutex> l(wait_state->mutex);
_impl::future_copy_traits<T>::copy(static_cast<T*>(static_cast<void*>(&wait_state->storage)), info);
wait_state->available = true;
wait_state->cv.notify_one();
}
typedef shared_future_1_type<T> _self_type;
};
template <typename...Args>
struct shared_future_varargs_type : private shared_future_common
{
typedef shared_future_common _base_type;
using _base_type::_base_type;
using _base_type::swap;
using _base_type::valid;
using _base_type::native_handle;
using _base_type::wait;
typedef _base_type::native_handle_type native_handle_type;
typedef std::tuple<Args...> tuple_type;
std::tuple<Args...> get() const
{
if(eina_main_loop_is())
throw std::runtime_error("Deadlock");
struct wait_state<tuple_type> wait_state;
efl::ecore::main_loop_thread_safe_call_async
([&]
{
efl_future_then(this->_future, &get_success, &_impl::get_error_cb, nullptr, &wait_state);
});
{
std::unique_lock<std::mutex> lock(wait_state.mutex);
while(!wait_state.available)
wait_state.cv.wait(lock);
}
if(wait_state.has_failed)
EFL_CXX_THROW(eina::system_error(eina::error_code(wait_state.error, eina::eina_error_category()), "EFL Eina Error"));
return *static_cast<tuple_type*>(static_cast<void*>(&wait_state.storage));
}
template <std::size_t N>
static void read_accessor(Eina_Accessor* accessor
, std::tuple<typename std::aligned_storage<sizeof(Args), alignof(Args)>::type...>& storage_tuple
, wait_state<tuple_type>* wait_state
, std::false_type)
{
typedef typename std::tuple_element<N, tuple_type>::type type;
void* value;
if(eina_accessor_data_get(accessor, N, &value))
{
eina::copy_from_c_traits<type>::copy_to_unitialized
(static_cast<type*>(static_cast<void*>(&std::get<N>(storage_tuple))), value);
_self_type::read_accessor<N+1>(accessor, storage_tuple, wait_state
, std::integral_constant<bool, (N+1 == sizeof...(Args))>());
}
else
{
std::abort();
// some error
}
}
template <std::size_t N, std::size_t...I>
static void read_accessor_end(std::tuple<typename std::aligned_storage<sizeof(Args), alignof(Args)>::type...>& storage_tuple
, wait_state<tuple_type>* wait_state
, eina::index_sequence<I...>)
{
std::unique_lock<std::mutex> l(wait_state->mutex);
new (&wait_state->storage) tuple_type{(*static_cast<typename std::tuple_element<I, tuple_type>::type*>
(static_cast<void*>(&std::get<I>(storage_tuple))))...};
wait_state->available = true;
wait_state->cv.notify_one();
}
template <std::size_t N>
static void read_accessor(Eina_Accessor*
, std::tuple<typename std::aligned_storage<sizeof(Args), alignof(Args)>::type...>& storage_tuple
, wait_state<tuple_type>* wait_state
, std::true_type)
{
_self_type::read_accessor_end<N>(storage_tuple, wait_state, eina::make_index_sequence<sizeof...(Args)>{});
}
static void get_success(void* data, Efl_Event const* event)
{
struct wait_state<tuple_type>* wait_state = static_cast<struct wait_state<tuple_type>*>(data);
Efl_Future_Event_Success* info = static_cast<Efl_Future_Event_Success*>(event->info);
Eina_Accessor* accessor = static_cast<Eina_Accessor*>(info->value);
std::tuple<typename std::aligned_storage<sizeof(Args), alignof(Args)>::type...> storage_tuple;
_self_type::read_accessor<0u>(accessor, storage_tuple, wait_state, std::false_type());
}
typedef shared_future_varargs_type<Args...> _self_type;
};
}
template <typename...Args>
struct shared_future : private std::conditional<sizeof...(Args) == 1, _impl::shared_future_1_type<typename std::tuple_element<0u, std::tuple<Args...>>::type>, _impl::shared_future_varargs_type<Args...>>::type
{
typedef typename std::conditional<sizeof...(Args) == 1, _impl::shared_future_1_type<typename std::tuple_element<0u, std::tuple<Args...>>::type>, _impl::shared_future_varargs_type<Args...>>::type _base_type;
using _base_type::_base_type;
using _base_type::swap;
using _base_type::valid;
using _base_type::get;
using _base_type::wait;
using _base_type::native_handle;
typedef typename _base_type::native_handle_type native_handle_type;
};
template <typename...Args, typename Success, typename Error>
shared_future
<
typename std::enable_if
<
!std::is_same<void, typename std::tuple_element<0, std::tuple<Args...>>::type>::value
&& !std::is_same<void, typename std::result_of<Success(Args...)>::type>::value
, typename std::result_of<Success(Args...)>::type
>::type
> then(shared_future<Args...> future, Success success_cb, Error error_cb)
{
struct private_data
{
Success success_cb;
Error error_cb;
shared_future<Args...> future;
};
private_data* pdata = new private_data
{std::move(success_cb), std::move(error_cb), std::move(future)};
Efl_Event_Cb raw_success_cb =
[] (void* data, Efl_Event const* event)
{
private_data* pdata = static_cast<private_data*>(data);
try
{
_impl::future_invoke<Args...>(pdata->success_cb, event);
// should value_set the next promise
}
catch(...)
{
// should fail the next promise
}
delete pdata;
};
Efl_Event_Cb raw_error_cb =
[] (void* data, Efl_Event const* event)
{
private_data* pdata = static_cast<private_data*>(data);
Efl_Future_Event_Failure* info = static_cast<Efl_Future_Event_Failure*>(event->info);
pdata->error_cb(eina::error_code(info->error, eina::eina_error_category()));
// should error the next promise (or should the promise do that for me automatically?)
delete pdata;
};
assert(pdata->future.valid());
Efl_Future* new_future
= efl_future_then(pdata->future.native_handle(), raw_success_cb, raw_error_cb, nullptr, pdata);
return shared_future<typename std::result_of<Success(Args...)>::type>{efl_ref(new_future)};
}
template <typename...Args, typename F>
void then(shared_future<Args...> future, F function)
{
}
2016-08-15 10:47:16 -07:00
template <typename...Args1, typename...Args2, typename...Futures>
typename _impl::all_result_type<shared_future<Args1...>, shared_future<Args2...>, Futures...>::type
all(shared_future<Args1...> future1, shared_future<Args2...> future2, Futures...futures)
{
return _impl::all_impl(future1, future2, futures...);
}
template <typename...Args1, typename...Args2, typename...Futures>
typename _impl::race_result_type<shared_future<Args1...>, shared_future<Args2...>, Futures...>::type
race(shared_future<Args1...> future1, shared_future<Args2...> future2, Futures...futures)
{
return _impl::race_impl(future1, future2, futures...);
}
template <typename...Args>
struct promise
{
};
}
#endif