efl_cxx: remove eolized promises from the CXX bindings

Summary:
Also added a blacklist header to temporarily disable generation of eo
methods with futures as arguments or return type.

Once the models branch lands, we should enable future support again with
eina_futures.

Reviewers: cedric

Reviewed By: cedric

Differential Revision: https://phab.enlightenment.org/D6018
This commit is contained in:
Lauro Moura 2018-05-01 09:37:50 -07:00 committed by Cedric BAIL
parent e43d72710b
commit 473d5b79c5
13 changed files with 69 additions and 1038 deletions

View File

@ -16,9 +16,6 @@ bindings/cxx/eo_cxx/Eo.hh \
bindings/cxx/eo_cxx/eo_init.hh \
bindings/cxx/eo_cxx/eo_ops.hh \
bindings/cxx/eo_cxx/eo_wref.hh \
bindings/cxx/eo_cxx/eo_future.hh \
bindings/cxx/eo_cxx/eo_promise.hh \
bindings/cxx/eo_cxx/eo_promise_meta.hh \
bindings/cxx/eo_cxx/eo_private.hh \
bindings/cxx/eo_cxx/efl_object_impl.hh
@ -247,8 +244,7 @@ tests_eina_cxx_eina_cxx_suite_DEPENDENCIES = @USE_EINA_INTERNAL_LIBS@ @USE_EO_IN
tests_eo_cxx_eo_cxx_suite_SOURCES = \
tests/eo_cxx/eo_cxx_suite.cc \
tests/eo_cxx/eo_cxx_suite.h \
tests/eo_cxx/eo_cxx_test_promise.cc
tests/eo_cxx/eo_cxx_suite.h
tests_eo_cxx_eo_cxx_suite_CPPFLAGS = -I$(top_builddir)/src/lib/efl \
-DTESTS_WD=\"`pwd`\" \

View File

@ -8,7 +8,6 @@
#include <eo_wref.hh>
//#include <eo_inherit.hh>
//#include <eo_own_ptr.hh>
#include <eo_promise.hh>
#include <eo_cxx_interop.hh>
#include <eo_event.hh>

View File

@ -7,7 +7,6 @@
#include <utility>
#include <type_traits>
#include <initializer_list>
#include <future>
#include <Eina.hh>
#include <Eo.hh>
@ -59,8 +58,6 @@ template <typename T>
struct out_traits<eina::optional<T&>> { typedef eina::optional<T&> type; };
template <>
struct out_traits<void*> { typedef void*& type; };
template <typename T>
struct out_traits<efl::shared_future<T>> { typedef efl::shared_future<T>& type; };
template <>
struct out_traits<efl::eina::strbuf> { typedef efl::eina::strbuf_wrapper& type; };
@ -68,8 +65,6 @@ template <typename T>
struct inout_traits { typedef T& type; };
template <>
struct inout_traits<void> { typedef void* type; };
template <typename T>
struct inout_traits<efl::shared_future<T>> { typedef efl::shared_future<T>& type; };
template <typename T>
struct return_traits { typedef T type; };
@ -142,10 +137,6 @@ void assign_out_impl(T& lhs, Eo const* rhs, tag<T&, Eo const*>
{
lhs._reset(const_cast<Eo*>(rhs));
}
template <typename T>
void assign_out_impl(efl::shared_future<T>& /*v*/, Efl_Future*, tag<efl::shared_future<T>&, Efl_Future*>)
{
}
template <typename Tag>
void assign_out_impl(efl::eina::string_view& view, const char* string, Tag)
{
@ -277,11 +268,6 @@ Eo const* convert_inout_impl(T v, tag<T, Eo const*>
{
return v._eo_ptr();
}
template <typename T>
Efl_Future* convert_inout_impl(efl::shared_future<T>& /*v*/, tag<efl::shared_future<T>, Efl_Future*>)
{
return nullptr;
}
}
template <typename To, typename From, typename V>
@ -545,11 +531,6 @@ inline const char* convert_to_c_impl(efl::eina::stringshare x, tag<const char*,
{
return eina_stringshare_ref(x.c_str());
}
template <typename T>
Efl_Future* convert_to_c_impl(efl::shared_future<T> const&, tag<Efl_Future*, efl::shared_future<T>const&>)
{
std::abort();
}
template <typename T, typename U, typename Deleter>
T* convert_to_c_impl(std::unique_ptr<U, Deleter>& v, tag<T*, std::unique_ptr<U, Deleter>>)
{
@ -709,12 +690,6 @@ eina::accessor<T> convert_to_return(Eina_Accessor* value, tag<Eina_Accessor*, ei
{
return eina::accessor<T>{ value };
}
template <typename T>
efl::shared_future<T> convert_to_return(Efl_Future* /*value*/, tag<Efl_Future*, efl::shared_future<T>>)
{
std::abort();
return {};
}
// Eina_Value*
inline efl::eina::value convert_to_return(Eina_Value* value, tag<Eina_Value*, efl::eina::value>)
{

View File

@ -1,505 +0,0 @@
///
/// @file eo_future.hh
///
#ifndef EFL_CXX_EO_FUTURE_HH
#define EFL_CXX_EO_FUTURE_HH
#include <Efl.h>
#include <Eina.hh>
#include <Ecore_Manual.hh>
#include <mutex>
#include <condition_variable>
#include <eina_tuple.hh>
#include <eo_promise_meta.hh>
namespace efl {
template <typename...Args>
struct shared_future;
namespace _impl {
template <typename V = char>
struct wait_state
{
bool available = false;
bool has_failed = false;
std::mutex mutex;
std::condition_variable cv;
typename std::aligned_storage<sizeof(V), alignof(V)>::type storage;
Eina_Error error;
};
inline void get_error_cb(void* data, Efl_Event const* event)
{
wait_state<>* wait_state_ = static_cast<wait_state<>*>(data);
Efl_Future_Event_Failure* info = static_cast<Efl_Future_Event_Failure*>(event->info);
std::unique_lock<std::mutex> l(wait_state_->mutex);
wait_state_->error = info->error;
wait_state_->has_failed = true;
wait_state_->available = true;
wait_state_->cv.notify_one();
}
struct shared_future_common
{
explicit shared_future_common(Efl_Future* future)
: _future(future) {}
shared_future_common()
: _future(nullptr) {}
~shared_future_common()
{
if(_future)
efl_unref(_future);
}
shared_future_common(shared_future_common const& future)
: _future(efl_ref(future._future))
{
}
shared_future_common& operator=(shared_future_common const& other)
{
_self_type tmp(other);
tmp.swap(*this);
return *this;
}
shared_future_common(shared_future_common&& future)
: _future(future._future)
{
future._future = nullptr;
}
shared_future_common& operator=(shared_future_common&& other)
{
other.swap(*this);
return *this;
}
void swap(shared_future_common& other)
{
std::swap(_future, other._future);
}
bool valid() const noexcept
{
return _future != nullptr;
}
void wait() const
{
if(eina_main_loop_is())
throw std::runtime_error("Deadlock");
struct wait_state<> wait_state;
efl::ecore::main_loop_thread_safe_call_async
([&]
{
efl_future_then(this->_future, &wait_success, &wait_success, nullptr, &wait_state);
});
std::unique_lock<std::mutex> lock(wait_state.mutex);
while(!wait_state.available)
wait_state.cv.wait(lock);
}
static void wait_success(void* data, Efl_Event const*)
{
wait_state<>* wait_state_ = static_cast<wait_state<>*>(data);
std::unique_lock<std::mutex> l(wait_state_->mutex);
wait_state_->available = true;
wait_state_->cv.notify_one();
}
typedef Efl_Future* native_handle_type;
native_handle_type native_handle() const noexcept { return _future; }
typedef shared_future_common _self_type;
Efl_Future* _future;
};
template <typename T, typename Progress = void>
struct shared_future_1_type : shared_future_common
{
typedef shared_future_common _base_type;
using _base_type::_base_type;
shared_future_1_type() = default;
shared_future_1_type(shared_future_common const& other)
: _base_type(other) {}
T get() const
{
if(eina_main_loop_is())
throw std::runtime_error("Deadlock");
struct wait_state<T> wait_state;
efl::ecore::main_loop_thread_safe_call_async
([&]
{
efl_future_then(this->_future, &get_success, &_impl::get_error_cb, nullptr, &wait_state);
});
{
std::unique_lock<std::mutex> lock(wait_state.mutex);
while(!wait_state.available)
wait_state.cv.wait(lock);
}
if(wait_state.has_failed)
EFL_CXX_THROW(eina::system_error(eina::error_code(wait_state.error, eina::eina_error_category()), "EFL Eina Error"));
return *static_cast<T*>(static_cast<void*>(&wait_state.storage));
}
static void get_success(void* data, Efl_Event const* event)
{
wait_state<T>* wait_state_ = static_cast<wait_state<T>*>(data);
Efl_Future_Event_Success* info = static_cast<Efl_Future_Event_Success*>(event->info);
std::unique_lock<std::mutex> l(wait_state_->mutex);
_impl::future_copy_traits<T>::copy(static_cast<T*>(static_cast<void*>(&wait_state_->storage)), info);
wait_state_->available = true;
wait_state_->cv.notify_one();
}
typedef shared_future_1_type<T, Progress> _self_type;
};
template <typename T>
struct shared_race_future_1_type : shared_future_common
{
typedef shared_future_common _base_type;
using _base_type::_base_type;
shared_race_future_1_type(_base_type const& other)
: _base_type(other) {}
T get() const
{
if(eina_main_loop_is())
throw std::runtime_error("Deadlock");
struct wait_state<T> wait_state;
efl::ecore::main_loop_thread_safe_call_async
([&]
{
efl_future_then(this->_future, &get_success, &_impl::get_error_cb, nullptr, &wait_state);
});
{
std::unique_lock<std::mutex> lock(wait_state.mutex);
while(!wait_state.available)
wait_state.cv.wait(lock);
}
if(wait_state.has_failed)
EFL_CXX_THROW(eina::system_error(eina::error_code(wait_state.error, eina::eina_error_category()), "EFL Eina Error"));
return *static_cast<T*>(static_cast<void*>(&wait_state.storage));
}
static void get_success(void* data, Efl_Event const* event)
{
wait_state<T>* wait_state_ = static_cast<wait_state<T>*>(data);
Efl_Future_Event_Success* info = static_cast<Efl_Future_Event_Success*>(event->info);
std::unique_lock<std::mutex> l(wait_state_->mutex);
_impl::future_copy_traits<T>::copy_race(static_cast<T*>(static_cast<void*>(&wait_state_->storage)), info);
wait_state_->available = true;
wait_state_->cv.notify_one();
}
typedef shared_race_future_1_type<T> _self_type;
};
template <typename...Args>
struct shared_future_varargs_type : shared_future_common
{
typedef shared_future_common _base_type;
using _base_type::_base_type;
shared_future_varargs_type() = default;
shared_future_varargs_type(_base_type const& other)
: _base_type(other) {}
typedef std::tuple<Args...> tuple_type;
std::tuple<Args...> get() const
{
if(eina_main_loop_is())
throw std::runtime_error("Deadlock");
struct wait_state<tuple_type> wait_state;
efl::ecore::main_loop_thread_safe_call_async
([&]
{
efl_future_then(this->_future, &get_success, &_impl::get_error_cb, nullptr, &wait_state);
});
{
std::unique_lock<std::mutex> lock(wait_state.mutex);
while(!wait_state.available)
wait_state.cv.wait(lock);
}
if(wait_state.has_failed)
EFL_CXX_THROW(eina::system_error(eina::error_code(wait_state.error, eina::eina_error_category()), "EFL Eina Error"));
return *static_cast<tuple_type*>(static_cast<void*>(&wait_state.storage));
}
template <std::size_t N>
static void read_accessor(Eina_Accessor* accessor
, std::tuple<typename std::aligned_storage<sizeof(Args), alignof(Args)>::type...>& storage_tuple
, wait_state<tuple_type>* wait_state
, std::false_type)
{
typedef typename std::tuple_element<N, tuple_type>::type type;
void* value;
if(eina_accessor_data_get(accessor, N, &value))
{
eina::copy_from_c_traits<type>::copy_to_unitialized
(static_cast<type*>(static_cast<void*>(&std::get<N>(storage_tuple))), value);
_self_type::read_accessor<N+1>(accessor, storage_tuple, wait_state
, std::integral_constant<bool, (N+1 == sizeof...(Args))>());
}
else
{
std::abort();
// some error
}
}
template <std::size_t N, std::size_t...I>
static void read_accessor_end(std::tuple<typename std::aligned_storage<sizeof(Args), alignof(Args)>::type...>& storage_tuple
, wait_state<tuple_type>* wait_state
, eina::index_sequence<I...>)
{
std::unique_lock<std::mutex> l(wait_state->mutex);
new (&wait_state->storage) tuple_type{(*static_cast<typename std::tuple_element<I, tuple_type>::type*>
(static_cast<void*>(&std::get<I>(storage_tuple))))...};
wait_state->available = true;
wait_state->cv.notify_one();
}
template <std::size_t N>
static void read_accessor(Eina_Accessor*
, std::tuple<typename std::aligned_storage<sizeof(Args), alignof(Args)>::type...>& storage_tuple
, wait_state<tuple_type>* wait_state
, std::true_type)
{
_self_type::read_accessor_end<N>(storage_tuple, wait_state, eina::make_index_sequence<sizeof...(Args)>{});
}
static void get_success(void* data, Efl_Event const* event)
{
wait_state<tuple_type>* wait_state_ = static_cast<wait_state<tuple_type>*>(data);
Efl_Future_Event_Success* info = static_cast<Efl_Future_Event_Success*>(event->info);
Eina_Accessor* accessor = static_cast<Eina_Accessor*>(info->value);
std::tuple<typename std::aligned_storage<sizeof(Args), alignof(Args)>::type...> storage_tuple;
_self_type::read_accessor<0u>(accessor, storage_tuple, wait_state_, std::false_type());
}
typedef shared_future_varargs_type<Args...> _self_type;
};
}
template <typename...Args>
struct shared_future : private
std::conditional
<
sizeof...(Args) == 1
, _impl::shared_future_1_type<typename std::tuple_element<0u, std::tuple<Args...>>::type>
, typename std::conditional
<_impl::is_progress<typename std::tuple_element<sizeof...(Args) - 1, std::tuple<Args...>>::type>::value
, typename std::conditional
<sizeof...(Args) == 2
, _impl::shared_future_1_type<Args...>
, _impl::shared_future_varargs_type<Args...>
>::type
, _impl::shared_future_varargs_type<Args...>
>::type
>::type
{
typedef typename
std::conditional
<
sizeof...(Args) == 1
, _impl::shared_future_1_type<Args...>
, typename std::conditional
<_impl::is_progress<typename std::tuple_element<sizeof...(Args) - 1, std::tuple<Args...>>::type>::value
, typename std::conditional
<sizeof...(Args) == 2
, _impl::shared_future_1_type<Args...>
, _impl::shared_future_varargs_type<Args...>
>::type
, _impl::shared_future_varargs_type<Args...>
>::type
>::type
_base_type;
typedef typename _impl::progress_param<Args...>::type progress_param_type;
typedef typename _impl::progress_type<progress_param_type>::type progress_type;
typedef typename _base_type::native_handle_type native_handle_type;
using _base_type::_base_type;
using _base_type::swap;
using _base_type::valid;
using _base_type::get;
using _base_type::wait;
using _base_type::native_handle;
shared_future() = default;
template <typename...OtherArgs>
shared_future(shared_future<OtherArgs...> const& other
, typename std::enable_if<_impl::is_progress_param_compatible
<progress_param_type, typename _impl::progress_param<OtherArgs...>::type>::value>::type* = nullptr)
: _base_type(static_cast< _impl::shared_future_common const&>(other))
{
}
template <typename...OtherArgs>
friend struct shared_future;
};
template <typename...Args>
struct shared_race_future : private std::conditional<sizeof...(Args) == 1, _impl::shared_race_future_1_type<typename std::tuple_element<0u, std::tuple<Args...>>::type>, void>::type
{
typedef typename std::conditional<sizeof...(Args) == 1, _impl::shared_race_future_1_type<typename std::tuple_element<0u, std::tuple<Args...>>::type>, void>::type _base_type;
using _base_type::_base_type;
using _base_type::swap;
using _base_type::valid;
using _base_type::get;
using _base_type::wait;
using _base_type::native_handle;
typedef typename _base_type::native_handle_type native_handle_type;
};
namespace _impl {
template <typename T>
struct is_race_future : std::false_type {};
template <typename...Args>
struct is_race_future<shared_race_future<Args...>> : std::true_type {};
}
template <template <typename...> class Future, typename...Args, typename F>
typename std::enable_if
<
!std::is_same<typename Future<Args...>::progress_type, void>::value
>::type on_progress(Future<Args...> future, F function)
{
struct private_data
{
F progress_cb;
Future<Args...> future;
};
private_data* pdata = new private_data
{std::move(function), std::move(future)};
typedef typename Future<Args...>::progress_type progress_type;
Efl_Event_Cb raw_progress_cb =
[] (void* data, Efl_Event const* event)
{
private_data* pdata = static_cast<private_data*>(data);
try
{
Efl_Future_Event_Progress const* info = static_cast<Efl_Future_Event_Progress const*>(event->info);
pdata->progress_cb(*static_cast<progress_type const*>(info->progress));
}
catch(...)
{
// what should happen if progress_cb fails?
}
};
Efl_Event_Cb raw_delete_cb =
[] (void* data, Efl_Event const*)
{
private_data* pdata = static_cast<private_data*>(data);
delete pdata;
};
assert(pdata->future.valid());
efl_future_then(pdata->future.native_handle(), raw_delete_cb, raw_delete_cb, raw_progress_cb, pdata);
}
template <template <typename...> class Future, typename...Args, typename Success, typename Error>
shared_future
<
typename std::enable_if
<
!std::is_same<void, typename std::tuple_element<0, std::tuple<Args...>>::type>::value
&& !std::is_same<void, typename std::result_of<Success(Args...)>::type>::value
, typename std::result_of<Success(Args...)>::type
>::type
> then(Future<Args...> future, Success success_cb, Error error_cb)
{
struct private_data
{
Success success_cb;
Error error_cb;
Future<Args...> future;
};
private_data* pdata = new private_data
{std::move(success_cb), std::move(error_cb), std::move(future)};
Efl_Event_Cb raw_success_cb =
[] (void* data, Efl_Event const* event)
{
private_data* pdata = static_cast<private_data*>(data);
try
{
_impl::future_invoke<Args...>(pdata->success_cb, event, _impl::is_race_future<Future<Args...>>{});
// should value_set the next promise
}
catch(...)
{
// should fail the next promise
}
delete pdata;
};
Efl_Event_Cb raw_error_cb =
[] (void* data, Efl_Event const* event)
{
private_data* pdata = static_cast<private_data*>(data);
Efl_Future_Event_Failure* info = static_cast<Efl_Future_Event_Failure*>(event->info);
pdata->error_cb(eina::error_code(info->error, eina::eina_error_category()));
// should error the next promise (or should the promise do that for me automatically?)
delete pdata;
};
assert(pdata->future.valid());
Efl_Future* new_future
= efl_future_then(pdata->future.native_handle(), raw_success_cb, raw_error_cb, nullptr, pdata);
return shared_future<typename std::result_of<Success(Args...)>::type>{efl_ref(new_future)};
}
// TODO:
template <typename...Args, typename F>
void then(shared_future<Args...> future, F function)
{
static_cast<void>(future);
static_cast<void>(function);
}
template <typename...Args1, typename...Args2, typename...Futures>
typename _impl::all_result_type<shared_future<Args1...>, shared_future<Args2...>, Futures...>::type
all(shared_future<Args1...> future1, shared_future<Args2...> future2, Futures...futures)
{
return _impl::all_impl(future1, future2, futures...);
}
template <typename...Args1, typename...Args2, typename...Futures>
typename _impl::race_result_type<shared_future<Args1...>, shared_future<Args2...>, Futures...>::type
race(shared_future<Args1...> future1, shared_future<Args2...> future2, Futures...futures)
{
return _impl::race_impl(future1, future2, futures...);
}
}
#endif

View File

@ -1,148 +0,0 @@
///
/// @file eo_promise.hh
///
#ifndef EFL_CXX_EO_PROMISE_HH
#define EFL_CXX_EO_PROMISE_HH
#include <Efl.h>
#include <Eina.hh>
#include <Ecore_Manual.hh>
#include <mutex>
#include <condition_variable>
#include <eina_tuple.hh>
#include <eo_promise_meta.hh>
#include <eo_future.hh>
namespace efl {
template <typename...Args>
struct shared_future;
namespace _impl {
struct promise_common
{
explicit promise_common(Efl_Promise* _promise) : _promise(_promise) {}
explicit promise_common(std::nullptr_t) : _promise(nullptr) {}
promise_common()
{
_promise = efl_add(EFL_PROMISE_CLASS, efl_main_loop_get());
}
~promise_common()
{
if(_promise)
::efl_unref(_promise);
}
promise_common(promise_common const& other)
: _promise( ::efl_ref(other._promise))
{
}
promise_common(promise_common&& other)
: _promise(nullptr)
{
std::swap(*this, other);
}
promise_common& operator=(promise_common const& other)
{
_promise = ::efl_ref(other._promise);
return *this;
}
promise_common& operator=(promise_common&& other)
{
std::swap(*this, other);
return *this;
}
bool valid() const
{
return _promise != nullptr;
}
void swap(promise_common& other)
{
std::swap(*this, other);
}
void set_exception(std::exception_ptr /*p*/)
{
}
Efl_Promise* _promise;
};
template <typename P>
struct promise_progress : promise_common
{
void set_progress(P const& progress)
{
efl_promise_progress_set(this->_promise, &progress);
}
};
template <>
struct promise_progress<void> : promise_common
{
void set_progress()
{
efl_promise_progress_set(this->_promise, nullptr);
}
};
template <typename T, typename Progress>
struct promise_1_type : promise_progress<Progress>
{
void set_value(T const& v)
{
typedef typename eina::alloc_to_c_traits<T>::c_type c_type;
c_type* c_value = eina::alloc_to_c_traits<T>::copy_alloc(v);
efl_promise_value_set(this->_promise, c_value, & eina::alloc_to_c_traits<T>::free_alloc);
}
void set_value(T&& v)
{
typedef typename eina::alloc_to_c_traits<T>::c_type c_type;
c_type* c_value = eina::alloc_to_c_traits<T>::copy_alloc(std::move(v));
efl_promise_value_set(this->_promise, c_value, & eina::alloc_to_c_traits<T>::free_alloc);
}
};
template <typename Progress>
struct promise_1_type<void, Progress> : promise_progress<Progress>
{
void set_value()
{
efl_promise_value_set(this->_promise, nullptr, nullptr);
}
};
}
template <typename T, typename Progress = void>
struct promise : private _impl::promise_1_type<T, Progress>
{
typedef _impl::promise_1_type<T, Progress> _base_type;
using _base_type::_base_type;
using _base_type::set_value;
using _base_type::set_progress;
using _base_type::set_exception;
shared_future<T, progress<Progress>> get_future()
{
return shared_future<T, progress<Progress>>{ ::efl_ref( ::efl_promise_future_get(this->_promise)) };
}
void swap(promise<T, progress<Progress>>& other)
{
_base_type::swap(other);
}
};
template <typename...Args>
void swap(promise<Args...>& lhs, promise<Args...>& rhs)
{
lhs.swap(rhs);
}
}
#endif

View File

@ -1,332 +0,0 @@
///
/// @file eo_promise_meta.hh
///
#ifndef EFL_CXX_EO_PROMISE_META_HH
#define EFL_CXX_EO_PROMISE_META_HH
namespace efl {
template <typename...Args>
struct shared_future;
template <typename...Args>
struct shared_race_future;
template <typename T>
struct progress;
namespace _impl {
template <typename T>
struct is_progress : std::false_type {};
template <typename T>
struct is_progress<progress<T>> : std::true_type {};
template <typename L, typename R>
struct is_progress_param_compatible : std::false_type {};
template <typename T>
struct is_progress_param_compatible<T, T> : std::true_type {};
template <>
struct is_progress_param_compatible<void, progress<void>> : std::true_type {};
template <>
struct is_progress_param_compatible<progress<void>, void> : std::true_type {};
template <typename...Args>
struct progress_param : std::conditional
<is_progress<typename std::tuple_element<sizeof...(Args) - 1, std::tuple<Args...>>::type>::value
, typename std::tuple_element<sizeof...(Args) - 1, std::tuple<Args...>>::type
, void>
{
};
template <typename T>
struct progress_type;
template <typename T>
struct progress_type<progress<T>>
{
typedef T type;
};
template <>
struct progress_type<void>
{
typedef void type;
};
template <typename...Futures>
struct all_result_type;
template <typename...Args>
struct all_result_type<shared_future<Args...>>
{
typedef shared_future<Args...> type;
};
template <typename...Args1, typename...Args2>
struct all_result_type<shared_future<Args1...>, shared_future<Args2...>>
{
typedef shared_future<Args1..., Args2...> type;
};
template <typename...Args1, typename...Args2, typename...OtherFutures>
struct all_result_type<shared_future<Args1...>, shared_future<Args2...>, OtherFutures...>
{
typedef typename all_result_type<shared_future<Args1..., Args2...>, OtherFutures...>::type type;
};
template <typename...Futures>
typename all_result_type<Futures...>::type
all_impl(Futures const& ... futures)
{
Efl_Future* future = ::efl_future_all_internal(futures.native_handle()..., NULL);
return typename all_result_type<Futures...>::type{ ::efl_ref(future)};
}
template <typename...Futures>
struct race_result_type;
template <typename...Args>
struct race_result_type<shared_future<Args...>>
{
typedef shared_race_future<Args...> type;
};
template <typename T, typename...Args>
struct race_compose_impl;
template <typename T, typename A0, typename...Args>
struct race_compose_impl<T, A0, Args...>
{
typedef typename std::conditional<eina::_mpl::tuple_contains<A0, T>::value
, typename race_compose_impl<T, Args...>::type
, typename race_compose_impl<typename eina::_mpl::push_back<T, A0>::type, Args...>::type
>::type type;
};
template <typename T>
struct race_compose_impl<T>
{
typedef T type;
};
template <typename T>
struct variant_from_tuple;
template <typename...Args>
struct variant_from_tuple<std::tuple<Args...>>
{
typedef eina::variant<Args...> type;
};
template <typename...Args>
struct race_variant
{
typedef typename variant_from_tuple<typename race_compose_impl<std::tuple<>, Args...>::type>::type type;
};
template <typename A0>
struct race_result_type<shared_future<A0>>
{
typedef shared_race_future<A0> type;
};
template <typename A0>
struct race_result_type<shared_future<eina::variant<A0>>>
{
typedef shared_race_future<A0> type;
};
template <typename...Args1, typename...Args2>
struct race_result_type<shared_future<Args1...>, shared_future<Args2...>>
{
typedef typename race_result_type<shared_future<typename race_variant<Args1..., Args2...>::type>>::type type;
};
template <typename...Args1, typename...Args2, typename...OtherFutures>
struct race_result_type<shared_future<Args1...>, shared_future<Args2...>, OtherFutures...>
{
typedef typename race_result_type<shared_future<typename race_variant<Args1..., Args2...>::type>
, OtherFutures...>::type type;
};
template <typename...Futures>
typename race_result_type<Futures...>::type
race_impl(Futures const& ... futures)
{
Efl_Future* future = ::efl_future_race_internal(futures.native_handle()..., NULL);
return typename race_result_type<Futures...>::type{ ::efl_ref(future)};
}
template <typename T, typename Enabler = void>
struct future_copy_traits
{
static void copy(T* storage, Efl_Future_Event_Success const* info)
{
eina::copy_from_c_traits<T>::copy_to_unitialized
(storage, info->value);
}
static void copy_race(T* storage, Efl_Future_Event_Success const* info)
{
Efl_Future_Race_Success const* race = static_cast<Efl_Future_Race_Success const*>(info->value);
eina::copy_from_c_traits<T>::copy_to_unitialized
(storage, race->value);
}
};
template <typename...Args>
struct future_copy_traits<eina::variant<Args...>>
{
template <std::size_t I>
static void copy_impl(eina::variant<Args...>*, void const*, int, std::integral_constant<std::size_t, I>
, std::integral_constant<std::size_t, I>)
{
std::abort();
}
template <std::size_t I, std::size_t N>
static void copy_impl(eina::variant<Args...>* storage, void const* value, int index, std::integral_constant<std::size_t, I>
, std::integral_constant<std::size_t, N> max
, typename std::enable_if<I != N>::type* = 0)
{
if(I == index)
{
eina::copy_from_c_traits<eina::variant<Args...>>::copy_to_unitialized
(storage, static_cast<typename std::tuple_element<I, std::tuple<Args...>>::type const*>
(static_cast<void const*>(value)));
}
else
copy_impl(storage, value, index, std::integral_constant<std::size_t, I+1>{}, max);
}
static void copy(eina::variant<Args...>*, Efl_Future_Event_Success const*)
{
std::abort();
}
static void copy_race(eina::variant<Args...>* storage, Efl_Future_Event_Success const* other_info)
{
Efl_Future_Race_Success const* info = static_cast<Efl_Future_Race_Success const*>
(static_cast<void const*>(other_info->value));
copy_impl(storage, info->value, info->index, std::integral_constant<std::size_t, 0ul>{}
, std::integral_constant<std::size_t, sizeof...(Args)>{});
}
};
template <typename A0, typename F, bool IsRace>
typename std::enable_if
<
!std::is_same<A0, void>::value
&& !std::is_same<typename std::result_of<F(A0)>::type, void>::value
>::type
future_invoke(F f, Efl_Event const* event, std::integral_constant<bool, IsRace> /* is_race */)
{
Efl_Future_Event_Success* info = static_cast<Efl_Future_Event_Success*>(event->info);
try
{
typename std::aligned_storage<sizeof(A0), alignof(A0)>::type storage;
if(IsRace)
future_copy_traits<A0>::copy_race(static_cast<A0*>(static_cast<void*>(&storage)), info);
else
future_copy_traits<A0>::copy(static_cast<A0*>(static_cast<void*>(&storage)), info);
auto r = f(*static_cast<A0*>(static_cast<void*>(&storage)));
typedef decltype(r) result_type;
typedef typename eina::alloc_to_c_traits<result_type>::c_type c_type;
c_type* c_value = eina::alloc_to_c_traits<result_type>::copy_alloc(r);
efl_promise_value_set(info->next, c_value, & eina::alloc_to_c_traits<result_type>::free_alloc);
}
catch(...)
{
}
}
template <typename A0, typename F, bool IsRace>
typename std::enable_if<std::is_same<A0, void>::value>::type
future_invoke(F f, Efl_Event const* event, std::integral_constant<bool, IsRace>)
{
Efl_Future_Event_Success* info = static_cast<Efl_Future_Event_Success*>(event->info);
static_cast<void>(info);
try
{
f();
}
catch(...)
{
}
}
template <std::size_t N, typename...Args, typename...StorageArgs>
static void future_invoke_impl_read_accessor
(Eina_Accessor*, std::tuple<StorageArgs...>&, std::tuple<Args...>*, std::true_type)
{
}
template <std::size_t N, typename...Args, typename...StorageArgs>
static void future_invoke_impl_read_accessor
(Eina_Accessor* accessor
, std::tuple<StorageArgs...>& storage_tuple
, std::tuple<Args...>* args
, std::false_type)
{
typedef std::tuple<Args...> tuple_type;
typedef typename std::tuple_element<N, tuple_type>::type type;
void* value;
if(eina_accessor_data_get(accessor, N, &value))
{
eina::copy_from_c_traits<type>::copy_to_unitialized
(static_cast<type*>(static_cast<void*>(&std::get<N>(storage_tuple))), value);
_impl::future_invoke_impl_read_accessor<N+1>
(accessor, storage_tuple, args
, std::integral_constant<bool, (N+1 == sizeof...(Args))>());
}
else
{
std::abort();
// some error
}
}
template <typename F, typename...Args, std::size_t...I, bool IsRace>
void future_invoke_impl(F f, Efl_Event const* event, std::tuple<Args...>* arguments_dummy, std::integral_constant<bool, IsRace>, eina::index_sequence<I...>)
{
Efl_Future_Event_Success* info = static_cast<Efl_Future_Event_Success*>(event->info);
try
{
typedef std::tuple<Args...> arguments;
typedef std::tuple<typename std::aligned_storage<sizeof(Args), alignof(Args)>::type...>
storage_tuple_type;
storage_tuple_type storage_tuple;
future_invoke_impl_read_accessor<0ul>
(static_cast<Eina_Accessor*>(info->value)
, storage_tuple
, arguments_dummy, std::false_type{});
auto r = f(*static_cast<typename std::tuple_element<I, arguments>::type*>
(static_cast<void*>(&std::get<I>(storage_tuple)))...);
typedef decltype(r) result_type;
typedef typename eina::alloc_to_c_traits<result_type>::c_type c_type;
c_type* c_value = eina::alloc_to_c_traits<result_type>::copy_alloc(r);
efl_promise_value_set(info->next, c_value, & eina::alloc_to_c_traits<result_type>::free_alloc);
}
catch(...)
{
}
}
template <typename A0, typename A1, typename...OtherArgs, typename F, bool IsRace>
void
future_invoke(F f, Efl_Event const* event, std::integral_constant<bool, IsRace> race)
{
std::tuple<A0, A1, OtherArgs...>* p = nullptr;
_impl::future_invoke_impl(f, event, p, race, eina::make_index_sequence<sizeof...(OtherArgs) + 2>{});
}
} }
#endif

View File

@ -0,0 +1,54 @@
#ifndef EOLIAN_CXX_BLACKLIST_HH
#define EOLIAN_CXX_BLACKLIST_HH
#include <algorithm>
#include "grammar/klass_def.hpp"
namespace efl { namespace eolian { namespace grammar {
namespace blacklist {
bool is_blacklisted(attributes::type_def const& t);
struct type_blacklisted_visitor
{
typedef type_blacklisted_visitor visitor_type;
typedef bool result_type;
bool operator()(attributes::regular_type_def const&) const
{
return false;
}
bool operator()(attributes::klass_name const&) const
{
return false;
}
bool operator()(attributes::complex_type_def const& c) const
{
if (c.outer.base_type == "future")
return true;
return std::any_of(c.subtypes.begin(), c.subtypes.end(), is_blacklisted);
}
};
bool is_blacklisted(attributes::type_def const& t)
{
return t.original_type.visit(type_blacklisted_visitor{});
}
bool is_blacklisted(attributes::function_def const& f)
{
if (is_blacklisted(f.return_type))
return true;
return std::any_of(f.parameters.cbegin(), f.parameters.cend(), [](attributes::parameter_def const& p) { return is_blacklisted(p.type); });
}
} // namespace grammar
} } } // namespace efl / eolian / grammar
#endif

View File

@ -12,6 +12,7 @@
#include "grammar/type.hpp"
#include "grammar/parameter.hpp"
#include "grammar/keyword.hpp"
#include "grammar/blacklist.hpp"
namespace efl { namespace eolian { namespace grammar {
@ -24,6 +25,9 @@ struct function_declaration_generator
template <typename OutputIterator, typename Context>
bool generate(OutputIterator sink, attributes::function_def const& f, Context const& ctx) const
{
if (blacklist::is_blacklisted(f))
return true;
std::string suffix, static_flag, const_flag;
switch(_klass_name.type)
{

View File

@ -18,6 +18,7 @@
#include "grammar/attribute_reorder.hpp"
#include "grammar/type_impl.hpp"
#include "grammar/eps.hpp"
#include "grammar/blacklist.hpp"
namespace efl { namespace eolian { namespace grammar {
@ -30,6 +31,9 @@ struct function_definition_generator
template <typename OutputIterator, typename Context>
bool generate(OutputIterator sink, attributes::function_def const& f, Context const& ctx) const
{
if (blacklist::is_blacklisted(f))
return true;
std::string suffix;
switch(_klass_name.type)
{

View File

@ -311,12 +311,12 @@ struct visitor_generate
(complex, regular_type_def{" ::efl::promise", complex.outer.base_qualifier, {}});
}
}
, {"future", nullptr, nullptr, [&]
{
return replace_outer
(complex, regular_type_def{" ::efl::shared_future", complex.outer.base_qualifier, {}});
}
}
/* , {"future", nullptr, nullptr, [&] */
/* { */
/* return replace_outer */
/* (complex, regular_type_def{" ::efl::shared_future", complex.outer.base_qualifier, {}}); */
/* } */
/* } */
, {"iterator", nullptr, nullptr, [&]
{
return replace_outer

View File

@ -6,7 +6,6 @@
#include "../efl_check.h"
static const Efl_Test_Case etc[] = {
{ "Promise", eo_cxx_test_promise },
{ NULL, NULL }
};

View File

@ -6,6 +6,5 @@
#include <check.h>
#include "../efl_check.h"
void eo_cxx_test_promise(TCase* tc);
#endif /* _EINA_CXX_SUITE_H */

View File

@ -1,14 +0,0 @@
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <Eina.hh>
#include <Eo.hh>
#include <Ecore.hh>
#include "eo_cxx_suite.h"
void
eo_cxx_test_promise(TCase* tc)
{
}