efl interface: introduce efl_gfx_path mixin.

As we discussed, redesigned efl_gfx_shape mixin.
Split path properties/methods from the shape so that other classes benefit from the path.
This commit is contained in:
Hermet Park 2016-11-23 17:29:38 +09:00
parent 4da634c26f
commit e0da83ce56
11 changed files with 1972 additions and 1879 deletions

View File

@ -20,6 +20,7 @@ efl_eolian_files = \
lib/efl/interfaces/efl_gfx_stack.eo \
lib/efl/interfaces/efl_gfx_view.eo \
lib/efl/interfaces/efl_gfx_buffer.eo \
lib/efl/interfaces/efl_gfx_path.eo \
lib/efl/interfaces/efl_gfx_shape.eo \
lib/efl/interfaces/efl_gfx_gradient.eo \
lib/efl/interfaces/efl_gfx_gradient_linear.eo \
@ -88,6 +89,7 @@ lib_LTLIBRARIES += lib/efl/libefl.la
lib_efl_libefl_la_SOURCES = \
lib/efl/interfaces/efl_interfaces_main.c \
lib/efl/interfaces/efl_model_common.c \
lib/efl/interfaces/efl_gfx_path.c \
lib/efl/interfaces/efl_gfx_shape.c \
lib/efl/interfaces/efl_vpath_file.c \
lib/efl/interfaces/efl_vpath_manager.c \

View File

@ -108,7 +108,7 @@ _ector_renderer_cairo_shape_ector_renderer_prepare(Eo *obj, Ector_Renderer_Cairo
pd->parent = efl_data_xref(base->surface, ECTOR_CAIRO_SURFACE_CLASS, obj);
}
efl_gfx_shape_path_get(obj, &cmds, &pts);
efl_gfx_path_get(obj, &cmds, &pts);
if (!pd->path && cmds)
{
cairo_new_path(pd->parent->cairo);
@ -232,13 +232,13 @@ _ector_renderer_cairo_shape_ector_renderer_cairo_fill(Eo *obj EINA_UNUSED,
static void
_ector_renderer_cairo_shape_ector_renderer_bounds_get(Eo *obj,
Ector_Renderer_Cairo_Shape_Data *pd EINA_UNUSED,
Eina_Rectangle *r)
Ector_Renderer_Cairo_Shape_Data *pd EINA_UNUSED,
Eina_Rectangle *r)
{
Ector_Renderer_Cairo_Data *bd;
// FIXME: It should be possible to actually ask cairo about that
efl_gfx_shape_bounds_get(obj, r);
efl_gfx_path_bounds_get(obj, r);
bd = efl_data_scope_get(obj, ECTOR_RENDERER_CAIRO_CLASS);
r->x += bd->generic->origin.x;
@ -297,7 +297,7 @@ _ector_renderer_cairo_shape_efl_object_destructor(Eo *obj, Ector_Renderer_Cairo_
//FIXME, As base class destructor can't call destructor of mixin class.
// call explicit API to free shape data.
efl_gfx_shape_reset(obj);
efl_gfx_path_reset(obj);
base = efl_data_scope_get(obj, ECTOR_RENDERER_CLASS);
efl_data_xunref(base->surface, pd->parent, obj);

View File

@ -107,7 +107,7 @@ _ector_renderer_gl_shape_ector_renderer_gl_fill(Eo *obj EINA_UNUSED,
static void
_ector_renderer_gl_shape_ector_renderer_bounds_get(Eo *obj, Ector_Renderer_GL_Shape_Data *pd, Eina_Rectangle *r)
{
efl_gfx_shape_bounds_get(obj, r);
efl_gfx_path_bounds_get(obj, r);
r->x += pd->base->origin.x;
r->y += pd->base->origin.y;

View File

@ -520,7 +520,7 @@ _update_rle(Eo *obj, Ector_Renderer_Software_Shape_Data *pd)
Efl_Gfx_Fill_Rule fill_rule;
Outline *outline, *dash_outline;
efl_gfx_shape_path_get(obj, &cmds, &pts);
efl_gfx_path_get(obj, &cmds, &pts);
fill_rule = efl_gfx_shape_fill_rule_get(obj);
if (cmds && (_generate_stroke_data(pd) || _generate_shape_data(pd)))
{
@ -666,17 +666,17 @@ _ector_renderer_software_shape_ector_renderer_software_fill(Eo *obj EINA_UNUSED,
}
static void
_ector_renderer_software_shape_efl_gfx_shape_path_set(Eo *obj,
Ector_Renderer_Software_Shape_Data *pd,
const Efl_Gfx_Path_Command *op,
const double *points)
_ector_renderer_software_shape_efl_gfx_path_path_set(Eo *obj,
Ector_Renderer_Software_Shape_Data *pd,
const Efl_Gfx_Path_Command *op,
const double *points)
{
if (pd->shape_data) ector_software_rasterizer_destroy_rle_data(pd->shape_data);
if (pd->outline_data) ector_software_rasterizer_destroy_rle_data(pd->outline_data);
pd->shape_data = NULL;
pd->outline_data = NULL;
efl_gfx_shape_path_set(efl_super(obj, ECTOR_RENDERER_SOFTWARE_SHAPE_CLASS), op, points);
efl_gfx_path_set(efl_super(obj, ECTOR_RENDERER_SOFTWARE_SHAPE_CLASS), op, points);
}
@ -711,7 +711,7 @@ _ector_renderer_software_shape_efl_object_destructor(Eo *obj, Ector_Renderer_Sof
{
//FIXME, As base class destructor can't call destructor of mixin class.
// call explicit API to free shape data.
efl_gfx_shape_reset(obj);
efl_gfx_path_reset(obj);
if (pd->shape_data) ector_software_rasterizer_destroy_rle_data(pd->shape_data);
if (pd->outline_data) ector_software_rasterizer_destroy_rle_data(pd->outline_data);

View File

@ -7,8 +7,8 @@ class Ector.Renderer.Software.Shape (Ector.Renderer.Software, Ector.Renderer.Sha
Ector.Renderer.draw;
Ector.Renderer.Software.fill;
Ector.Renderer.crc.get;
Efl.Gfx.Shape.path.set;
Efl.Gfx.Path.path.set;
Efl.Object.constructor;
Efl.Object.destructor;
Efl.Object.destructor;
}
}

View File

@ -108,6 +108,7 @@ EAPI extern const Efl_Event_Description _EFL_GFX_PATH_CHANGED;
#include "interfaces/efl_gfx_stack.eo.h"
#include "interfaces/efl_gfx_fill.eo.h"
#include "interfaces/efl_gfx_view.eo.h"
#include "interfaces/efl_gfx_path.eo.h"
#include "interfaces/efl_gfx_shape.eo.h"
#include "interfaces/efl_gfx_gradient.eo.h"
#include "interfaces/efl_gfx_gradient_linear.eo.h"

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,275 @@
import eina_types;
import efl_gfx_types;
mixin Efl.Gfx.Path
{
[[EFL graphics path object interface]]
methods {
@property path {
[[Set the list of commands and points to be used to create the
content of shape.
See \@ref efl_gfx_path interface for how to create a command list.
@since 1.18
]]
set {
}
get {
}
values {
op: ptr(const(Efl.Gfx.Path.Command_Type)); [[Command list]]
points: ptr(const(double)); [[Point list]]
}
}
@property length {
[[Path length property]]
get {
}
values {
commands: uint; [[Commands]]
points: uint; [[Points]]
}
}
@property current {
[[Current point coordinates]]
get {
}
values {
x: double; [[X co-ordinate of the current point.]]
y: double; [[Y co-ordinate of the current point.]]
}
}
@property current_ctrl {
[[Current control point coordinates]]
get {
}
values {
x: double; [[X co-ordinate of control point.]]
y: double; [[Y co-ordinate of control point.]]
}
}
dup {
[[Copy the shape data from the object specified.
@since 1.18
]]
params {
@in dup_from: const(Efl.Object); [[Shape object from where data will be copied.]]
}
}
bounds_get {
[[Compute and return the bounding box of the currently set path
@since 1.18
]]
params {
@out r: Eina.Rectangle; [[Contain the bounding box of the currently set path]]
}
}
reset {
[[Reset the shape data of the shape object.
@since 1.18
]]
}
append_move_to {
[[Moves the current point to the given point,
implicitly starting a new subpath and closing the previous one.
See also @.append_close.
@since 1.18
]]
params {
@in x: double; [[X co-ordinate of the current point.]]
@in y: double; [[Y co-ordinate of the current point.]]
}
}
append_line_to {
[[Adds a straight line from the current position to the given end point.
After the line is drawn, the current position is updated to be at the
end point of the line.
If no current position present, it draws a line to itself, basically
a point.
See also @.append_move_to.
@since 1.18
]]
params {
@in x: double; [[X co-ordinate of end point of the line.]]
@in y: double; [[Y co-ordinate of end point of the line.]]
}
}
append_quadratic_to {
[[Adds a quadratic Bezier curve between the current position and the
given end point (x,y) using the control points specified by (ctrl_x,
ctrl_y). After the path is drawn, the current position is updated to
be at the end point of the path.
@since 1.18
]]
params {
@in x: double; [[X co-ordinate of end point of the line.]]
@in y: double; [[Y co-ordinate of end point of the line.]]
@in ctrl_x: double; [[X co-ordinate of control point.]]
@in ctrl_y: double; [[Y co-ordinate of control point.]]
}
}
append_squadratic_to {
[[Same as efl_gfx_path_append_quadratic_to() api only difference is
that it uses the current control point to draw the bezier.
See also @.append_quadratic_to.
@since 1.18
]]
params {
@in x: double; [[X co-ordinate of end point of the line.]]
@in y: double; [[Y co-ordinate of end point of the line.]]
}
}
append_cubic_to {
[[Adds a cubic Bezier curve between the current position and the
given end point (x,y) using the control points specified by
(ctrl_x0, ctrl_y0), and (ctrl_x1, ctrl_y1). After the path is drawn,
the current position is updated to be at the end point of the path.
@since 1.18
]]
params {
@in ctrl_x0: double; [[X co-ordinate of 1st control point.]]
@in ctrl_y0: double; [[Y co-ordinate of 1st control point.]]
@in ctrl_x1: double; [[X co-ordinate of 2nd control point.]]
@in ctrl_y1: double; [[Y co-ordinate of 2nd control point.]]
@in x: double; [[X co-ordinate of end point of the line.]]
@in y: double; [[Y co-ordinate of end point of the line.]]
}
}
append_scubic_to {
[[Same as efl_gfx_path_append_cubic_to() api only difference is that it
uses the current control point to draw the bezier.
See also @.append_cubic_to.
@since 1.18
]]
params {
@in x: double; [[X co-ordinate of end point of the line.]]
@in y: double; [[Y co-ordinate of end point of the line.]]
@in ctrl_x: double; [[X co-ordinate of 2nd control point.]]
@in ctrl_y: double; [[Y co-ordinate of 2nd control point.]]
}
}
append_arc_to {
[[Append an arc that connects from the current point int the point list
to the given point (x,y). The arc is defined by the given radius in
x-direction (rx) and radius in y direction (ry).
Use this api if you know the end point's of the arc otherwise use
more convenient function @.append_arc.
@since 1.18
]]
params {
@in x: double; [[X co-ordinate of end point of the arc.]]
@in y: double; [[Y co-ordinate of end point of the arc.]]
@in rx: double; [[Radius of arc in x direction.]]
@in ry: double; [[Radius of arc in y direction.]]
@in angle: double; [[X-axis rotation , normally 0.]]
@in large_arc: bool; [[Defines whether to draw the larger arc or
smaller arc joining two point.]]
@in sweep: bool; [[Defines whether the arc will be drawn
counter-clockwise or clockwise from current point
to the end point taking into account the large_arc
property.]]
}
}
append_arc {
[[Append an arc that enclosed in the given rectangle (x, y, w, h).
The angle is defined in counter clock wise , use -ve angle for clockwise arc.
@since 1.18
]]
params {
@in x: double; [[X co-ordinate of the rect.]]
@in y: double; [[Y co-ordinate of the rect.]]
@in w: double; [[Width of the rect.]]
@in h: double; [[Height of the rect.]]
@in start_angle: double; [[Angle at which the arc will start]]
@in sweep_length: double; [[@ Length of the arc.]]
}
}
append_close {
[[Closes the current subpath by drawing a line to the beginning of the
subpath, automatically starting a new path. The current point of the
new path is (0, 0).
If the subpath does not contain any points, this function does nothing.
@since 1.18
]]
}
append_circle {
[[Append a circle with given center and radius.
@since 1.18
]]
params {
@in x: double; [[X co-ordinate of the center of the circle.]]
@in y: double; [[Y co-ordinate of the center of the circle.]]
@in radius: double; [[Radius of the circle.]]
}
}
append_rect {
[[Append the given rectangle with rounded corner to the path.
The xr and yr arguments specify the radii of the ellipses defining the
corners of the rounded rectangle.
xr and yr are specified in terms of width and height respectively.
If xr and yr are 0, then it will draw a rectangle without rounded
corner.
@since 1.18
]]
params {
@in x: double; [[X co-ordinate of the rectangle.]]
@in y: double; [[Y co-ordinate of the rectangle.]]
@in w: double; [[Width of the rectangle.]]
@in h: double; [[Height of the rectangle.]]
@in rx: double; [[The x radius of the rounded corner and should be
in range [ 0 to w/2 ]
]]
@in ry: double; [[The y radius of the rounded corner and should be
in range [ 0 to h/2 ]
]]
}
}
append_svg_path {
[[Append SVG path data]]
params {
@in svg_path_data: string; [[SVG path data to append]]
}
}
interpolate {
[[Interpolate object]]
return: bool; [[$true on success, $false otherwise]]
params {
@in from: const(Efl.Object); [[Source object]]
@in to: const(Efl.Object); [[Destination object]]
@in pos_map: double; [[Position map]]
}
}
equal_commands {
[[Equal commands in object]]
return: bool; [[True on success, $false otherwise]]
params {
@in with: const(Efl.Object); [[Object]]
}
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,7 +1,6 @@
import eina_types;
import efl_gfx_types;
mixin Efl.Gfx.Shape
mixin Efl.Gfx.Shape (Efl.Gfx.Path)
{
[[EFL graphics shape object interface]]
methods {
@ -118,48 +117,13 @@ mixin Efl.Gfx.Shape
One of $EFL_GFX_FILL_RULE_WINDING, $EFL_GFX_FILL_RULE_ODD_EVEN]]
}
}
@property path {
[[Set the list of commands and points to be used to create the
content of shape.
See \@ref efl_gfx_path interface for how to create a command list.
@since 1.14
]]
set {
}
get {
}
values {
op: ptr(const(Efl.Gfx.Path.Command_Type)); [[Command list]]
points: ptr(const(double)); [[Point list]]
}
}
@property path_length {
[[Path length property]]
get {
}
values {
commands: uint; [[Commands]]
points: uint; [[Points]]
}
}
@property current {
[[Current point coordinates]]
get {
}
values {
x: double; [[X co-ordinate of the current point.]]
y: double; [[Y co-ordinate of the current point.]]
}
}
@property current_ctrl {
[[Current control point coordinates]]
get {
}
values {
x: double; [[X co-ordinate of control point.]]
y: double; [[Y co-ordinate of control point.]]
interpolate {
[[Interpolate object]]
return: bool; [[$true on success, $false otherwise]]
params {
@in from: const(Efl.Object); [[Source object]]
@in to: const(Efl.Object); [[Destination object]]
@in pos_map: double; [[Position map]]
}
}
dup {
@ -171,218 +135,5 @@ mixin Efl.Gfx.Shape
@in dup_from: const(Efl.Object); [[Shape object from where data will be copied.]]
}
}
bounds_get {
[[Compute and return the bounding box of the currently set path
@since 1.14
]]
params {
@out r: Eina.Rectangle; [[Contain the bounding box of the currently set path]]
}
}
reset {
[[Reset the shape data of the shape object.
@since 1.14
]]
}
append_move_to {
[[Moves the current point to the given point,
implicitly starting a new subpath and closing the previous one.
See also @.append_close.
@since 1.14
]]
params {
@in x: double; [[X co-ordinate of the current point.]]
@in y: double; [[Y co-ordinate of the current point.]]
}
}
append_line_to {
[[Adds a straight line from the current position to the given end point.
After the line is drawn, the current position is updated to be at the
end point of the line.
If no current position present, it draws a line to itself, basically
a point.
See also @.append_move_to.
@since 1.14
]]
params {
@in x: double; [[X co-ordinate of end point of the line.]]
@in y: double; [[Y co-ordinate of end point of the line.]]
}
}
append_quadratic_to {
[[Adds a quadratic Bezier curve between the current position and the
given end point (x,y) using the control points specified by (ctrl_x,
ctrl_y). After the path is drawn, the current position is updated to
be at the end point of the path.
@since 1.14
]]
params {
@in x: double; [[X co-ordinate of end point of the line.]]
@in y: double; [[Y co-ordinate of end point of the line.]]
@in ctrl_x: double; [[X co-ordinate of control point.]]
@in ctrl_y: double; [[Y co-ordinate of control point.]]
}
}
append_squadratic_to {
[[Same as efl_gfx_path_append_quadratic_to() api only difference is
that it uses the current control point to draw the bezier.
See also @.append_quadratic_to.
@since 1.14
]]
params {
@in x: double; [[X co-ordinate of end point of the line.]]
@in y: double; [[Y co-ordinate of end point of the line.]]
}
}
append_cubic_to {
[[Adds a cubic Bezier curve between the current position and the
given end point (x,y) using the control points specified by
(ctrl_x0, ctrl_y0), and (ctrl_x1, ctrl_y1). After the path is drawn,
the current position is updated to be at the end point of the path.
@since 1.14
]]
params {
@in ctrl_x0: double; [[X co-ordinate of 1st control point.]]
@in ctrl_y0: double; [[Y co-ordinate of 1st control point.]]
@in ctrl_x1: double; [[X co-ordinate of 2nd control point.]]
@in ctrl_y1: double; [[Y co-ordinate of 2nd control point.]]
@in x: double; [[X co-ordinate of end point of the line.]]
@in y: double; [[Y co-ordinate of end point of the line.]]
}
}
append_scubic_to {
[[Same as efl_gfx_path_append_cubic_to() api only difference is that it
uses the current control point to draw the bezier.
See also @.append_cubic_to.
@since 1.14
]]
params {
@in x: double; [[X co-ordinate of end point of the line.]]
@in y: double; [[Y co-ordinate of end point of the line.]]
@in ctrl_x: double; [[X co-ordinate of 2nd control point.]]
@in ctrl_y: double; [[Y co-ordinate of 2nd control point.]]
}
}
append_arc_to {
[[Append an arc that connects from the current point int the point list
to the given point (x,y). The arc is defined by the given radius in
x-direction (rx) and radius in y direction (ry).
Use this api if you know the end point's of the arc otherwise use
more convenient function @.append_arc.
@since 1.14
]]
params {
@in x: double; [[X co-ordinate of end point of the arc.]]
@in y: double; [[Y co-ordinate of end point of the arc.]]
@in rx: double; [[Radius of arc in x direction.]]
@in ry: double; [[Radius of arc in y direction.]]
@in angle: double; [[X-axis rotation , normally 0.]]
@in large_arc: bool; [[Defines whether to draw the larger arc or
smaller arc joining two point.]]
@in sweep: bool; [[Defines whether the arc will be drawn
counter-clockwise or clockwise from current point
to the end point taking into account the large_arc
property.]]
}
}
append_arc {
[[Append an arc that enclosed in the given rectangle (x, y, w, h).
The angle is defined in counter clock wise , use -ve angle for clockwise arc.
@since 1.18
]]
params {
@in x: double; [[X co-ordinate of the rect.]]
@in y: double; [[Y co-ordinate of the rect.]]
@in w: double; [[Width of the rect.]]
@in h: double; [[Height of the rect.]]
@in start_angle: double; [[Angle at which the arc will start]]
@in sweep_length: double; [[@ Length of the arc.]]
}
}
append_close {
[[Closes the current subpath by drawing a line to the beginning of the
subpath, automatically starting a new path. The current point of the
new path is (0, 0).
If the subpath does not contain any points, this function does nothing.
@since 1.14
]]
}
append_circle {
[[Append a circle with given center and radius.
@since 1.14
]]
params {
@in x: double; [[X co-ordinate of the center of the circle.]]
@in y: double; [[Y co-ordinate of the center of the circle.]]
@in radius: double; [[Radius of the circle.]]
}
}
append_rect {
[[Append the given rectangle with rounded corner to the path.
The xr and yr arguments specify the radii of the ellipses defining the
corners of the rounded rectangle.
xr and yr are specified in terms of width and height respectively.
If xr and yr are 0, then it will draw a rectangle without rounded
corner.
@since 1.14
]]
params {
@in x: double; [[X co-ordinate of the rectangle.]]
@in y: double; [[Y co-ordinate of the rectangle.]]
@in w: double; [[Width of the rectangle.]]
@in h: double; [[Height of the rectangle.]]
@in rx: double; [[The x radius of the rounded corner and should be
in range [ 0 to w/2 ]
]]
@in ry: double; [[The y radius of the rounded corner and should be
in range [ 0 to h/2 ]
]]
}
}
append_svg_path {
[[Append SVG path data]]
params {
@in svg_path_data: string; [[SVG path data to append]]
}
}
interpolate {
[[Interpolate object]]
return: bool; [[$true on success, $false otherwise]]
params {
@in from: const(Efl.Object); [[Source object]]
@in to: const(Efl.Object); [[Destination object]]
@in pos_map: double; [[Position map]]
}
}
equal_commands {
[[Equal commands in object]]
return: bool; [[True on success, $false otherwise]]
params {
@in with: const(Efl.Object); [[Object]]
}
}
}
}

View File

@ -22,7 +22,7 @@ _efl_vg_shape_efl_vg_bounds_get(Eo *obj,
Eina_Rectangle *r)
{
// FIXME: Use the renderer bounding box when it has been created instead of an estimation
efl_gfx_shape_bounds_get(obj, r);
efl_gfx_path_bounds_get(obj, r);
}
static void
@ -330,31 +330,31 @@ evas_vg_shape_stroke_join_set(Eo *obj, Efl_Gfx_Join j)
EAPI void
evas_vg_shape_path_set(Eo *obj, const Efl_Gfx_Path_Command *op, const double *points)
{
efl_gfx_shape_path_set(obj, op, points);
efl_gfx_path_set(obj, op, points);
}
EAPI void
evas_vg_shape_path_get(Eo *obj, const Efl_Gfx_Path_Command **op, const double **points)
{
efl_gfx_shape_path_get(obj, op, points);
efl_gfx_path_get(obj, op, points);
}
EAPI void
evas_vg_shape_path_length_get(Eo *obj, unsigned int *commands, unsigned int *points)
{
efl_gfx_shape_path_length_get(obj, commands, points);
efl_gfx_path_length_get(obj, commands, points);
}
EAPI void
evas_vg_shape_current_get(Eo *obj, double *x, double *y)
{
efl_gfx_shape_current_get(obj, x, y);
efl_gfx_path_current_get(obj, x, y);
}
EAPI void
evas_vg_shape_current_ctrl_get(Eo *obj, double *x, double *y)
{
efl_gfx_shape_current_ctrl_get(obj, x, y);
efl_gfx_path_current_ctrl_get(obj, x, y);
}
EAPI void
@ -366,79 +366,79 @@ evas_vg_shape_dup(Eo *obj, Eo *dup_from)
EAPI void
evas_vg_shape_reset(Eo *obj)
{
efl_gfx_shape_reset(obj);
efl_gfx_path_reset(obj);
}
EAPI void
evas_vg_shape_append_move_to(Eo *obj, double x, double y)
{
efl_gfx_shape_append_move_to(obj, x, y);
efl_gfx_path_append_move_to(obj, x, y);
}
EAPI void
evas_vg_shape_append_line_to(Eo *obj, double x, double y)
{
efl_gfx_shape_append_line_to(obj, x, y);
efl_gfx_path_append_line_to(obj, x, y);
}
EAPI void
evas_vg_shape_append_quadratic_to(Eo *obj, double x, double y, double ctrl_x, double ctrl_y)
{
efl_gfx_shape_append_quadratic_to(obj, x, y, ctrl_x, ctrl_y);
efl_gfx_path_append_quadratic_to(obj, x, y, ctrl_x, ctrl_y);
}
EAPI void
evas_vg_shape_append_squadratic_to(Eo *obj, double x, double y)
{
efl_gfx_shape_append_squadratic_to(obj, x, y);
efl_gfx_path_append_squadratic_to(obj, x, y);
}
EAPI void
evas_vg_shape_append_cubic_to(Eo *obj, double x, double y, double ctrl_x0, double ctrl_y0, double ctrl_x1, double ctrl_y1)
{
efl_gfx_shape_append_cubic_to(obj, x, y, ctrl_x0, ctrl_y0, ctrl_x1, ctrl_y1);
efl_gfx_path_append_cubic_to(obj, x, y, ctrl_x0, ctrl_y0, ctrl_x1, ctrl_y1);
}
EAPI void
evas_vg_shape_append_scubic_to(Eo *obj, double x, double y, double ctrl_x, double ctrl_y)
{
efl_gfx_shape_append_scubic_to(obj, x, y, ctrl_x, ctrl_y);
efl_gfx_path_append_scubic_to(obj, x, y, ctrl_x, ctrl_y);
}
EAPI void
evas_vg_shape_append_arc_to(Eo *obj, double x, double y, double rx, double ry, double angle, Eina_Bool large_arc, Eina_Bool sweep)
{
efl_gfx_shape_append_arc_to(obj, x, y, rx, ry, angle, large_arc, sweep);
efl_gfx_path_append_arc_to(obj, x, y, rx, ry, angle, large_arc, sweep);
}
EAPI void
evas_vg_shape_append_arc(Eo *obj, double x, double y, double w, double h, double start_angle, double sweep_length)
{
efl_gfx_shape_append_arc(obj, x, y, w, h, start_angle, sweep_length);
efl_gfx_path_append_arc(obj, x, y, w, h, start_angle, sweep_length);
}
EAPI void
evas_vg_shape_append_close(Eo *obj)
{
efl_gfx_shape_append_close(obj);
efl_gfx_path_append_close(obj);
}
EAPI void
evas_vg_shape_append_circle(Eo *obj, double x, double y, double radius)
{
efl_gfx_shape_append_circle(obj, x, y, radius);
efl_gfx_path_append_circle(obj, x, y, radius);
}
EAPI void
evas_vg_shape_append_rect(Eo *obj, double x, double y, double w, double h, double rx, double ry)
{
efl_gfx_shape_append_rect(obj, x, y, w, h, rx, ry);
efl_gfx_path_append_rect(obj, x, y, w, h, rx, ry);
}
EAPI void
evas_vg_shape_append_svg_path(Eo *obj, const char *svg_path_data)
{
efl_gfx_shape_append_svg_path(obj, svg_path_data);
efl_gfx_path_append_svg_path(obj, svg_path_data);
}
EAPI Eina_Bool
@ -450,7 +450,7 @@ evas_vg_shape_interpolate(Eo *obj, const Eo *from, const Eo *to, double pos_map)
EAPI Eina_Bool
evas_vg_shape_equal_commands(Eo *obj, const Eo *with)
{
return efl_gfx_shape_equal_commands(obj, with);
return efl_gfx_path_equal_commands(obj, with);
}
EAPI Efl_VG*