evas: updated evas_vg_sample with the appen_arc() api as well as _shape_dup() api test.

Reviewers: Hermet, cedric

Reviewed By: cedric

Subscribers: cedric, jpeg

Differential Revision: https://phab.enlightenment.org/D3966

Signed-off-by: Cedric BAIL <cedric@osg.samsung.com>
This commit is contained in:
Subhransu Mohanty 2016-05-31 14:42:37 -07:00 committed by Cedric BAIL
parent b43a7f5187
commit fbde2778af
1 changed files with 16 additions and 349 deletions

View File

@ -39,16 +39,6 @@
#define PATH_KAPPA 0.5522847498
#define PI 3.1415926535
typedef struct _Bezier
{
float x1, y1, x2, y2, x3, y3, x4, y4;
}Bezier;
typedef struct _Point
{
int x;
int y;
}Point;
static Efl_VG *beginning = NULL;
static Efl_VG *end = NULL;
@ -56,337 +46,6 @@ static Efl_VG *root = NULL;
static double start_time = 0;
static Ecore_Animator *anim = NULL;
static
Bezier bezierFromPoints(Point p1, Point p2,
Point p3, Point p4)
{
Bezier b;
b.x1 = p1.x;
b.y1 = p1.y;
b.x2 = p2.x;
b.y2 = p2.y;
b.x3 = p3.x;
b.y3 = p3.y;
b.x4 = p4.x;
b.y4 = p4.y;
return b;
}
static inline void
parameterSplitLeft(Bezier *b, float t, Bezier *left)
{
left->x1 = b->x1;
left->y1 = b->y1;
left->x2 = b->x1 + t * ( b->x2 - b->x1 );
left->y2 = b->y1 + t * ( b->y2 - b->y1 );
left->x3 = b->x2 + t * ( b->x3 - b->x2 ); // temporary holding spot
left->y3 = b->y2 + t * ( b->y3 - b->y2 ); // temporary holding spot
b->x3 = b->x3 + t * ( b->x4 - b->x3 );
b->y3 = b->y3 + t * ( b->y4 - b->y3 );
b->x2 = left->x3 + t * ( b->x3 - left->x3);
b->y2 = left->y3 + t * ( b->y3 - left->y3);
left->x3 = left->x2 + t * ( left->x3 - left->x2 );
left->y3 = left->y2 + t * ( left->y3 - left->y2 );
left->x4 = b->x1 = left->x3 + t * (b->x2 - left->x3);
left->y4 = b->y1 = left->y3 + t * (b->y2 - left->y3);
}
static
Bezier bezierOnInterval(Bezier *b, float t0, float t1)
{
if (t0 == 0 && t1 == 1)
return *b;
Bezier result;
parameterSplitLeft(b, t0, &result);
float trueT = (t1-t0)/(1-t0);
parameterSplitLeft(b, trueT, &result);
return result;
}
static inline void
_bezier_coefficients(float t, float *ap, float *bp, float *cp, float *dp)
{
float a,b,c,d;
float m_t = 1. - t;
b = m_t * m_t;
c = t * t;
d = c * t;
a = b * m_t;
b *= 3. * t;
c *= 3. * m_t;
*ap = a;
*bp = b;
*cp = c;
*dp = d;
}
static
float _t_for_arc_angle(float angle)
{
if (angle < 0.00001)
return 0;
if (angle == 90.0)
return 1;
float radians = PI * angle / 180;
float cosAngle = cos(radians);
float sinAngle = sin(radians);
// initial guess
float tc = angle / 90;
// do some iterations of newton's method to approximate cosAngle
// finds the zero of the function b.pointAt(tc).x() - cosAngle
tc -= ((((2-3*PATH_KAPPA) * tc + 3*(PATH_KAPPA-1)) * tc) * tc + 1 - cosAngle) // value
/ (((6-9*PATH_KAPPA) * tc + 6*(PATH_KAPPA-1)) * tc); // derivative
tc -= ((((2-3*PATH_KAPPA) * tc + 3*(PATH_KAPPA-1)) * tc) * tc + 1 - cosAngle) // value
/ (((6-9*PATH_KAPPA) * tc + 6*(PATH_KAPPA-1)) * tc); // derivative
// initial guess
float ts = tc;
// do some iterations of newton's method to approximate sinAngle
// finds the zero of the function b.pointAt(tc).y() - sinAngle
ts -= ((((3*PATH_KAPPA-2) * ts - 6*PATH_KAPPA + 3) * ts + 3*PATH_KAPPA) * ts - sinAngle)
/ (((9*PATH_KAPPA-6) * ts + 12*PATH_KAPPA - 6) * ts + 3*PATH_KAPPA);
ts -= ((((3*PATH_KAPPA-2) * ts - 6*PATH_KAPPA + 3) * ts + 3*PATH_KAPPA) * ts - sinAngle)
/ (((9*PATH_KAPPA-6) * ts + 12*PATH_KAPPA - 6) * ts + 3*PATH_KAPPA);
// use the average of the t that best approximates cosAngle
// and the t that best approximates sinAngle
float t = 0.5 * (tc + ts);
return t;
}
static void
_find_ellipse_coords(int x, int y, int w, int h, float angle, float length,
Point* startPoint, Point *endPoint)
{
if (!w || !h ) {
if (startPoint)
startPoint->x = 0 , startPoint->y = 0;
if (endPoint)
endPoint->x = 0 , endPoint->y = 0;
return;
}
int w2 = w / 2;
int h2 = h / 2;
float angles[2] = { angle, angle + length };
Point *points[2] = { startPoint, endPoint };
int i =0;
for (i = 0; i < 2; ++i) {
if (!points[i])
continue;
float theta = angles[i] - 360 * floor(angles[i] / 360);
float t = theta / 90;
// truncate
int quadrant = (int)t;
t -= quadrant;
t = _t_for_arc_angle(90 * t);
// swap x and y?
if (quadrant & 1)
t = 1 - t;
float a, b, c, d;
_bezier_coefficients(t, &a, &b, &c, &d);
float px = a + b + c*PATH_KAPPA;
float py = d + c + b*PATH_KAPPA;
// left quadrants
if (quadrant == 1 || quadrant == 2)
px = -px;
// top quadrants
if (quadrant == 0 || quadrant == 1)
py = -py;
int cx = x+w/2;
int cy = y+h/2;
points[i]->x = cx + w2 * px;
points[i]->y = cy + h2 * py;
}
}
//// The return value is the starting point of the arc
static
Point _curves_for_arc(int x, int y, int w, int h,
float startAngle, float sweepLength,
Point *curves, int *point_count)
{
*point_count = 0;
int w2 = w / 2;
int w2k = w2 * PATH_KAPPA;
int h2 = h / 2;
int h2k = h2 * PATH_KAPPA;
Point points[16] =
{
// start point
{ x + w, y + h2 },
// 0 -> 270 degrees
{ x + w, y + h2 + h2k },
{ x + w2 + w2k, y + h },
{ x + w2, y + h },
// 270 -> 180 degrees
{ x + w2 - w2k, y + h },
{ x, y + h2 + h2k },
{ x, y + h2 },
// 180 -> 90 degrees
{ x, y + h2 - h2k },
{ x + w2 - w2k, y },
{ x + w2, y },
// 90 -> 0 degrees
{ x + w2 + w2k, y },
{ x + w, y + h2 - h2k },
{ x + w, y + h2 }
};
if (sweepLength > 360) sweepLength = 360;
else if (sweepLength < -360) sweepLength = -360;
// Special case fast paths
if (startAngle == 0) {
if (sweepLength == 360) {
int i;
for (i = 11; i >= 0; --i)
curves[(*point_count)++] = points[i];
return points[12];
} else if (sweepLength == -360) {
int i ;
for (i = 1; i <= 12; ++i)
curves[(*point_count)++] = points[i];
return points[0];
}
}
int startSegment = (int)(floor(startAngle / 90));
int endSegment = (int)(floor((startAngle + sweepLength) / 90));
float startT = (startAngle - startSegment * 90) / 90;
float endT = (startAngle + sweepLength - endSegment * 90) / 90;
int delta = sweepLength > 0 ? 1 : -1;
if (delta < 0) {
startT = 1 - startT;
endT = 1 - endT;
}
// avoid empty start segment
if (startT == 1.0) {
startT = 0;
startSegment += delta;
}
// avoid empty end segment
if (endT == 0) {
endT = 1;
endSegment -= delta;
}
startT = _t_for_arc_angle(startT * 90);
endT = _t_for_arc_angle(endT * 90);
Eina_Bool splitAtStart = !(fabs(startT) <= 0.00001f);
Eina_Bool splitAtEnd = !(fabs(endT - 1.0) <= 0.00001f);
const int end = endSegment + delta;
// empty arc?
if (startSegment == end) {
const int quadrant = 3 - ((startSegment % 4) + 4) % 4;
const int j = 3 * quadrant;
return delta > 0 ? points[j + 3] : points[j];
}
Point startPoint, endPoint;
_find_ellipse_coords(x, y, w, h, startAngle, sweepLength, &startPoint, &endPoint);
int i;
for (i = startSegment; i != end; i += delta) {
const int quadrant = 3 - ((i % 4) + 4) % 4;
const int j = 3 * quadrant;
Bezier b;
if (delta > 0)
b = bezierFromPoints(points[j + 3], points[j + 2], points[j + 1], points[j]);
else
b = bezierFromPoints(points[j], points[j + 1], points[j + 2], points[j + 3]);
// empty arc?
if (startSegment == endSegment && (startT == endT))
return startPoint;
if (i == startSegment) {
if (i == endSegment && splitAtEnd)
b = bezierOnInterval(&b, startT, endT);
else if (splitAtStart)
b = bezierOnInterval(&b, startT, 1);
} else if (i == endSegment && splitAtEnd) {
b = bezierOnInterval(&b, 0, endT);
}
// push control points
curves[(*point_count)].x = b.x2;
curves[(*point_count)++].y = b.y2;
curves[(*point_count)].x = b.x3;
curves[(*point_count)++].y = b.y3;
curves[(*point_count)].x = b.x4;
curves[(*point_count)++].y = b.y4;
}
curves[*(point_count)-1] = endPoint;
return startPoint;
}
void _arcto(Efl_VG *obj, int x, int y, int width, int height, int startAngle, int sweepLength)
{
int point_count;
Point pts[15];
Point curve_start = _curves_for_arc(x, y, width, height, startAngle, sweepLength, pts, &point_count);
int cx = x + (width)/2;
int cy = y + (height)/2;
int i;
evas_vg_shape_shape_append_move_to(obj, cx, cy);
evas_vg_shape_shape_append_line_to(obj, curve_start.x, curve_start.y);
for (i = 0; i < point_count; i += 3)
{
evas_vg_shape_shape_append_cubic_to(obj,
pts[i].x, pts[i].y,
pts[i+1].x, pts[i+1].y,
pts[i+2].x, pts[i+2].y);
}
evas_vg_shape_shape_append_close(obj);
}
void _rect_add(Efl_VG *obj, int x, int y, int w, int h)
{
evas_vg_shape_shape_append_move_to(obj, x, y);
evas_vg_shape_shape_append_line_to(obj, x + w, y);
evas_vg_shape_shape_append_line_to(obj, x + w, y +h);
evas_vg_shape_shape_append_line_to(obj, x, y +h);
evas_vg_shape_shape_append_close(obj);
}
struct example_data
{
Ecore_Evas *ee;
@ -417,9 +76,9 @@ static void
vector_set(int x, int y, int w, int h)
{
int vg_w = w, vg_h = h;
Efl_VG *root_node, *tmp_vg;
//Create VG Object
Evas_Object *tmp = evas_object_rectangle_add(d.evas);
evas_object_resize(tmp, vg_w, vg_h);
evas_object_color_set(tmp, 100, 100, 50, 100);
@ -446,11 +105,11 @@ vector_set(int x, int y, int w, int h)
eina_matrix3_identity(&matrix);
eina_matrix3_rotate(&matrix, radian);
root = evas_object_vg_root_node_get(d.vg);
root = eo_add(EFL_VG_CONTAINER_CLASS, NULL);
//evas_vg_node_transformation_set(root, &matrix);
Efl_VG *bg = eo_add(EFL_VG_SHAPE_CLASS, root, efl_vg_name_set(eo_self, "bg"));
_rect_add(bg, 0, 0 , vg_w, vg_h);
evas_vg_shape_shape_append_rect(bg, 0, 0 , vg_w, vg_h, 0, 0);
evas_vg_node_origin_set(bg, 0,0);
evas_vg_shape_stroke_width_set(bg, 1.0);
evas_vg_node_color_set(bg, 80, 80, 80, 80);
@ -459,7 +118,7 @@ vector_set(int x, int y, int w, int h)
Efl_VG *rgradient = eo_add(EFL_VG_GRADIENT_RADIAL_CLASS, NULL, efl_vg_name_set(eo_self, "rgradient"));
Efl_VG *lgradient = eo_add(EFL_VG_GRADIENT_LINEAR_CLASS, NULL, efl_vg_name_set(eo_self, "lgradient"));
_arcto(shape, 0, 0, 100, 100, 25, 330);
evas_vg_shape_shape_append_arc(shape, 0, 0, 100, 100, 25, 330);
Efl_Gfx_Gradient_Stop stops[3];
stops[0].r = 255;
@ -499,7 +158,7 @@ vector_set(int x, int y, int w, int h)
evas_vg_shape_stroke_color_set(shape, 0, 0, 255, 128);
Efl_VG *rect = eo_add(EFL_VG_SHAPE_CLASS, root, efl_vg_name_set(eo_self, "rect"));
_rect_add(rect, 0, 0, 100, 100);
evas_vg_shape_shape_append_rect(rect, 0, 0, 100, 100, 0, 0);
evas_vg_node_origin_set(rect, 100, 100);
evas_vg_shape_fill_set(rect, lgradient);
evas_vg_shape_stroke_width_set(rect, 2.0);
@ -507,7 +166,7 @@ vector_set(int x, int y, int w, int h)
evas_vg_shape_stroke_color_set(rect, 255, 255, 255, 255);
Efl_VG *rect1 = eo_add(EFL_VG_SHAPE_CLASS, root, efl_vg_name_set(eo_self, "rect1"));
_rect_add(rect1, 0, 0, 70, 70);
evas_vg_shape_shape_append_rect(rect1, 0, 0, 70, 70, 0, 0);
evas_vg_node_origin_set(rect1, 50, 70);
evas_vg_shape_stroke_scale_set(rect1, 2);
evas_vg_shape_stroke_width_set(rect1, 8.0);
@ -515,7 +174,7 @@ vector_set(int x, int y, int w, int h)
evas_vg_shape_stroke_color_set(rect1, 0, 100, 80, 100);
Efl_VG *circle = eo_add(EFL_VG_SHAPE_CLASS, root, efl_vg_name_set(eo_self, "circle"));
_arcto(circle, 0, 0, 250, 100, 30, 300);
evas_vg_shape_shape_append_arc(circle, 0, 0, 250, 100, 30, 300);
evas_vg_shape_fill_set(circle, lgradient);
//evas_vg_node_transformation_set(&matrix),
evas_vg_node_origin_set(circle, 50,50);
@ -523,7 +182,7 @@ vector_set(int x, int y, int w, int h)
// Foreground
Efl_VG *fg = eo_add(EFL_VG_SHAPE_CLASS, root, efl_vg_name_set(eo_self, "fg"));
_rect_add(fg, 0, 0, vg_w, vg_h);
evas_vg_shape_shape_append_rect(fg, 0, 0, vg_w, vg_h, 0, 0);
evas_vg_node_origin_set(fg, 0, 0);
evas_vg_shape_stroke_width_set(fg, 5.0);
evas_vg_shape_stroke_join_set(fg, EFL_GFX_JOIN_ROUND);
@ -546,6 +205,14 @@ vector_set(int x, int y, int w, int h)
circle = efl_vg_container_child_get(end, "circle");
efl_vg_transformation_set(circle, &matrix);
root_node = evas_object_vg_root_node_get(d.vg);
// check if the dupe is working properly or not
eo_parent_set(beginning, root_node);
tmp_vg = root;
root = beginning;
beginning = tmp_vg;
}
static Eina_Bool