efl/src/lib/ecore_con/efl_net_control_access_poin...

450 lines
17 KiB
Plaintext
Raw Normal View History

enum @beta Efl.Net.Control.Access_Point_State {
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
[[Provides the access point state.
]]
idle, [[Nothing is happening with this access point]]
association, [[The access point is trying to associate itself. This is the first state after a connection attempt.]]
configuration, [[The access point is configuring itself, such as DHCP.]]
local, [[The access point is connected but the internet connection hasn't been validated.]]
online, [[The access point is connected and the internet connection has been validated.]]
disconnect, [[The access point is disconnecting.]]
failure, [[The connection attempt failed, @Efl.Net.Control.Access_Point.error will provide more details]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
enum @beta Efl.Net.Control.Access_Point_Error {
[[The reason for the connection error.
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
]]
none, [[All OK, no errors]]
out_of_range, [[Wireless device is out of range.]]
pin_missing, [[PIN was required and is missing.]]
dhcp_failed, [[DHCP failed to provide configuration.]]
connect_failed, [[Could not connect to access point.]]
login_failed, [[Login or authentication information was incorrect, agent_request_input event may be emitted.]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
enum @beta Efl.Net.Control.Access_Point_Security {
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
[[Bitwise-able securities supported by an access point.
]]
unknow = 0, [[Unknown]]
none = (1 << 0), [[Open access, no security]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
wep = (1 << 1), [[WEP]]
psk = (1 << 2), [[PSK (Pre Shared Key), such as WPA or RSN]]
ieee802_1x = (1 << 3), [[IEEE 802.1X]]
}
enum @beta Efl.Net.Control.Access_Point_Ipv4_Method {
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
[[The method used to configure IPv4
]]
off, [[IPv4 is disabled.]]
dhcp, [[IPv4 is configured using DHCP.]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
manual, [[IPv4 is manually set using address, netmask and gateway]]
unset, [[Only to be used with @Efl.Net.Control.Access_Point.configuration_ipv4]]
}
enum @beta Efl.Net.Control.Access_Point_Ipv6_Method {
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
[[The method used to configure IPv6
]]
off, [[IPv6 is disabled.]]
fixed, [[IPv6 is fixed by operator and cannot be changed.]]
manual, [[IPv6 is manually set using address, netmask and gateway.]]
auto_privacy_none, [[IPv6 is set using dhcp or using a tunnel6to4. No privacy extensions should be used.]]
auto_privacy_public, [[IPv6 is set using dhcp or using a tunnel6to4, privacy extensions are used and the system prefers a public IP address over temporary addresses.]]
auto_privacy_temporary, [[IPv6 is set using dhcp or using a tunnel6to4, privacy extensions are used and the system prefers a temporary IP address over public addresses.]]
tunnel6to4, [[IPv6 was configured using a 6-to-4 tunnel. This cannot be set by the user, which is set to "auto" instead]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
unset, [[Only to be used with @Efl.Net.Control.Access_Point.configuration_ipv6]]
}
enum @beta Efl.Net.Control.Access_Point_Proxy_Method {
[[The method used to configure Proxies.
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
]]
off, [[Direct connection to the internet, no proxy used.]]
auto, [[Proxy is autoconfigured using Proxy-Auto-Configuration (PAC) using given URL.]]
manual, [[Proxy is configured manually using servers and excludes.]]
unset, [[Only to be used with @Efl.Net.Control.Access_Point.configuration_proxy.]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
class @beta Efl.Net.Control.Access_Point extends Efl.Loop_Consumer {
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
[[An access point for network connectivity.
The @Efl.Net.Control.Manager is composed of multiple technologies, each
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
create access points to allow configuration and connection.
An application requiring only a network connection can just
use a @Efl.Net.Session instead.
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
]]
events {
changed: void; [[Called when some properties were changed.]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
methods {
connect {
[[Connects to this access point.
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
This connection will happen asynchronously in the
background, with results being delivered by events in
the access point object, such as the "changed".
Successful connections will remember the device and set
it to auto-connect using the property @.auto_connect.
See @.forget, @.remembered, @.auto_connect and
@.disconnect
The future may fail with non-fatal errors such as
EINPROGRESS (the connection was already ongoing) and
EALREADY (the connection was already established).
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
]]
return: future<void> @move; [[Future for asynchronous connect]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
disconnect {
[[Disconnects from this access point.
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
When disconnected previously connected access points
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
won't be forgotten. The configuration and other details
such as priority and passphrase will be available for
future re-connection with a call to @.connect. If you
need to disconnect and forget all access point
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
information, use @.forget instead.
]]
}
forget {
[[Disconnects and forgets about this access point.
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
Successful @.connect will always remember the access
point for future re-connections. This method overrides
this by disconnecting and forgetting the access
point and its configuration, which will set
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
@.remembered to $false.
]]
}
@property state {
[[The current state of the access point.
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
Whenever the state changes, "changed" will be emitted.
]]
get { }
values {
state: Efl.Net.Control.Access_Point_State; [[Access point state]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
@property error {
[[If the access point is in error state, this states the error.]]
get { }
values {
error: Efl.Net.Control.Access_Point_Error; [[Access point error]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
@property ssid {
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
[[The user-friendly access point name.
For hidden WiFi networks, this is empty.
]]
get { }
values {
name: string; [[Access point name]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
@property priority {
[[The access point priority in the current access point listing.
This property is dynamic and reflects the index of the
access point in the current access points list. As
access points may come and go, the value may change at
any time and send notifications via the "changed" event.
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
If set, then it will reorder priorities, moving all other
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
services at equal or higher priority up. To move as the
first (most priority), then use 0. To move as the last
priority, use UINT32_MAX or the last known priority + 1.
Note: Only stored access points may be reordered
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
among themselves. Those that are not remembered will
always come last in a random order defined by the backend.
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
]]
get { }
set { }
values {
priority: uint; [[Access point priority in listing]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
@property technology {
[[The technology that generated this access point]]
get { }
values {
technology: Efl.Net.Control.Technology; [[Access point technology]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
@property strength {
[[Signal strength percentage in 0-100]]
get { }
values {
strength: uint8; [[Access point signal strength]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
@property roaming {
[[If it's a cellular access point and it's on roaming.]]
get { }
values {
roaming: bool; [[$true if the access point is cellular and uses roaming, $false otherwise]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
@property auto_connect {
[[Whenever to auto-connect to this access point if no other is connected.
By default successfully connected access points are
remembered and set to auto-connect. This behavior can be
changed with this property.
An access point is only connected automatically if there
are no other connected and if it is not on roaming.
]]
get { }
set { }
values {
auto_connect: bool; [[$true when auto-connect is set for this access point, $false otherwise]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
@property remembered {
[[Successfully connected access points are remembered.
To forget about this access point, call @.forget.
]]
get { }
values {
remembered: bool; [[$true if this access point will be remembered, $false otherwise]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
@property immutable {
[[Immutable access points are those defined in configuration files and its properties can't be changed using API.]]
get { }
values {
immutable: bool; [[$true is this access point is immutable, $false otherwise]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
@property security {
[[Security options such as WEP, WPS, PSK or none (open).]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
get { }
values {
security: Efl.Net.Control.Access_Point_Security; [[Bitwise OR of security supported by this access point]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
@property name_servers {
[[DNS (Domain Name Servers) in use for this access point.
These are the actual values used. Configure them using
@.configuration_name_servers. This may generate changes
to this property, triggering the "changed"
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
event.
]]
get { }
values {
name_servers: iterator<string> @move; [[Iterator to DNS server]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
@property time_servers {
[[NTP (Time Server) in use for this access point.
These are the actual values used. Configure them using
@.configuration_name_servers. This may generate changes
to this property, triggering the "changed"
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
event.
]]
get { }
values {
time_servers: iterator<string> @move; [[Iterator to time server]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
@property domains {
[[Searches domains in use for this access point.
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
These are the actual values used. Configure them using
@.configuration_name_servers. This may generate changes
to this property, triggering the "changed"
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
event.
]]
get { }
values {
domains: iterator<string> @move; [[Iterator to search domains]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
@property ipv4 {
[[IPv4 in use for this access point.
These are the actual values used. Configure them using
@.configuration_name_servers. This may generate changes
to this property, triggering the "changed"
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
event.
]]
get { }
values {
method: Efl.Net.Control.Access_Point_Ipv4_Method; [[IPv4 method]]
address: string; [[IPv4 address]]
netmask: string; [[IPv4 netmask]]
gateway: string; [[IPv4 gateway]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
@property ipv6 {
[[IPv6 in use for this access point.
These are the actual values used. Configure them using
@.configuration_name_servers. This may generate changes
to this property, triggering the "changed"
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
event.
]]
get { }
values {
method: Efl.Net.Control.Access_Point_Ipv6_Method; [[IPv6 method]]
address: string; [[IPv6 address]]
prefix_length: uint8; [[IPv6 prefix length]]
netmask: string; [[IPv6 netmask]]
gateway: string; [[IPv6 gateway]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
@property proxy {
[[Proxy in use for this access point.
These are the actual values used. Configure them using
@.configuration_name_servers. This may generate changes
to this property, triggering the "changed"
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
event.
]]
get { }
values {
method: Efl.Net.Control.Access_Point_Proxy_Method; [[Proxy method]]
url: string; [[If @Efl.Net.Control.Access_Point_Proxy_Method.auto, then states the URL to use for proxy auto-configuration]]
servers: iterator<string> @move; [[If @Efl.Net.Control.Access_Point_Proxy_Method.manual, then states the URI with proxy servers to use, like "http://proxy.domain.com:911"]]
excludes: iterator<string> @move; [[If @Efl.Net.Control.Access_Point_Proxy_Method.manual, then states the hosts or patterns to exclude from proxy access, such as "localhost", ".domain.com", or "10.0.0.0..."]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
@property configuration_name_servers {
[[DNS (Domain Name Servers) configured by user for this access point.
These are user configured values, which will be
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
applied by the backend system and in turn may result in
"changed" event to notify of @.name_servers property
with the actual value in use, which may differ from
this.
]]
set { }
get { }
values {
name_servers: iterator<string> @move; [[Iterator to user DNS server]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
@property configuration_time_servers {
[[NTP (Time Server) configured by user for this access point.
These are user configured values, which will be
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
applied by the backend system and in turn may result in
"changed" event to notify of @.name_servers property
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
with the actual value in use, which may differ from
this.
]]
set { }
get { }
values {
time_servers: iterator<string> @move; [[Iterator to user time server]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
@property configuration_domains {
[[Searches domains configured by user for this access point.
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
These are user configured values, which will be
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
applied by the backend system and in turn may result in
"changed" event to notify of @.domains property
with the actual value in use, which may differ from
this.
]]
set { }
get { }
values {
domains: iterator<string> @move; [[Iterator to user search domains]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
@property configuration_ipv4 {
[[IPv4 configured by user for this access point.
These are user configured values, which will be
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
applied by the backend system and in turn may result in
"changed" event to notify of @.ipv4 property
with the actual value in use, which may differ from
this.
]]
set { }
get { }
values {
method: Efl.Net.Control.Access_Point_Ipv4_Method; [[IPv4 method]]
address: string; [[IPv4 address]]
netmask: string; [[IPv4 netmask]]
gateway: string; [[IPv4 gateway]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
@property configuration_ipv6 {
[[IPv6 configured by user for this access point.
These are user configured values, which will be
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
applied by the backend system and in turn may result in
"changed" event to notify of @.ipv6 property
with the actual value in use, which may differ from
this.
]]
set { }
get { }
values {
method: Efl.Net.Control.Access_Point_Ipv6_Method; [[IPv6 method]]
address: string; [[IPv6 address]]
prefix_length: uint8; [[IPv6 prefix length]]
netmask: string; [[IPv6 netmask]]
gateway: string; [[IPv6 gateway]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
@property configuration_proxy {
[[Proxy configured by user for this access point.
These are user configured values, which will be
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
applied by the backend system and in turn may result in
"changed" event to notify of @.proxy property
with the actual value in use, which may differ from
this.
]]
set { }
get { }
values {
method: Efl.Net.Control.Access_Point_Proxy_Method; [[Proxy method]]
url: string; [[If @Efl.Net.Control.Access_Point_Proxy_Method.auto, then states the URL to use for proxy auto-configuration]]
servers: iterator<string> @move; [[If @Efl.Net.Control.Access_Point_Proxy_Method.manual, then states the URI with proxy servers to use, like "http://proxy.domain.com:911"]]
excludes: iterator<string> @move; [[If @Efl.Net.Control.Access_Point_Proxy_Method.manual, then states the hosts or patterns to exclude from proxy access, such as "localhost", ".domain.com", or "10.0.0.0..."]]
efl_net_session and efl_net_control for ConnMan These are objects to allow control of networking devices (efl_net_control) as well as an application to request for connectivity (efl_net_session). They are loosely based on ConnMan.org, which we already use in Enlightenment Window Manager via DBus access with Eldbus. However they do not map 1:1 as the goal was to expose a viable subset of controls but in a simple and general way, thus nome strings were converted to enums, some arrays of strings were converted to bitwise flags, some names were made more general, such as "service" was turned into "access point" so it doesn't generate confusion with other "network services" (ie: http server), or "favorite" that was renamed to "remembered". Some behavior are slightly different (yet able to be implemented on top), such as "Service.MoveBefore" and "MoveAfter" were converted to a numeric "priority", calculated from service's list index, changing the priority will reoder the list and thus generate the MoveBefore and MoveAfter DBus commands. ConnMan was chosen not only because we already use it, but because its DBus API is sane and simple, with the server doing almost all that we need. This is visible in the efl_net_session, which is completely done in the server and do not require any extra work on our side -- aside from talking DBus and converting to Eo, which is a major work :-D NOTE: ConnMan doesn't use FreeDesktop.Org DBus interfaces such as Properties and ObjectManager, thus we cannot use eldbus_model_object. There are two examples added: - efl_net_session_example: monitors the connection available for an application and try to connect. You need a connman compiled with session_policy_local and a configuration file explained in https://github.com/aldebaran/connman/blob/master/doc/session-policy-format.txt to get a connection if nothing is connected. Otherwise it will just monitor the connectivity state. - efl_net_control_example: monitors, plays the agent and configure the network details. It can enable/disable technologies, connect to access points (services) and configure them. It's quite extensive as allows testing all of ConnMan's DBus API except P2P (Peers).
2016-09-15 17:43:19 -07:00
}
}
}
implements {
Efl.Object.destructor;
}
}